Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Turing completeness
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Formal definitions== In [[computability theory]], several closely related terms are used to describe the computational power of a computational system (such as an [[abstract machine]] or [[programming language]]): ;Turing completeness : A computational system that can compute every Turing-[[computable function]] is called Turing-complete (or Turing-powerful). Alternatively, such a system is one that can simulate a [[universal Turing machine]]. ;Turing equivalence : A Turing-complete system is called Turing-equivalent if every function it can compute is also Turing-computable; i.e., it computes precisely the same class of functions as do [[Turing machine]]s. Alternatively, a Turing-equivalent system is one that can simulate, and be simulated by, a universal Turing machine. (All known physically-implementable Turing-complete systems are Turing-equivalent, which adds support to the [[Church–Turing thesis]].{{Citation needed|date=March 2021}}) ;(Computational) universality : A system is called universal with respect to a class of systems if it can compute every function computable by systems in that class (or can simulate each of those systems). Typically, the term 'universality' is tacitly used with respect to a Turing-complete class of systems. The term "weakly universal" is sometimes used to distinguish a system (e.g. a [[cellular automaton]]) whose universality is achieved only by modifying the standard definition of [[Turing machine]] so as to include input streams with infinitely many 1s.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Turing completeness
(section)
Add topic