Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Trigonometric functions
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Right-angled triangle definitions == [[File:TrigonometryTriangle.svg|thumb|In this right triangle, denoting the measure of angle BAC as A: {{math|1=sin ''A'' = {{sfrac|''a''|''c''}}}}; {{math|1=cos ''A'' = {{sfrac|''b''|''c''}}}}; {{math|1=tan ''A'' = {{sfrac|''a''|''b''}}}}.]] [[File:TrigFunctionDiagram.svg|thumb|Plot of the six trigonometric functions, the unit circle, and a line for the angle {{math|1=''θ'' = 0.7 radians}}. The points labeled {{color|#D00|1}}, {{color|#02D|Sec(''θ'')}}, {{color|#0D1|Csc(''θ'')}} represent the length of the line segment from the origin to that point. {{color|#D00|Sin(''θ'')}}, {{color|#02D|Tan(''θ'')}}, and {{color|#0D1|1}} are the heights to the line starting from the {{mvar|x}}-axis, while {{color|#D00|Cos(''θ'')}}, {{color|#02D|1}}, and {{color|#0D1|Cot(''θ'')}} are lengths along the {{mvar|x}}-axis starting from the origin.]] If the acute angle {{mvar|θ}} is given, then any right triangles that have an angle of {{mvar|θ}} are [[similarity (geometry)|similar]] to each other. This means that the ratio of any two side lengths depends only on {{mvar|θ}}. Thus these six ratios define six functions of {{mvar|θ}}, which are the trigonometric functions. In the following definitions, the [[hypotenuse]] is the length of the side opposite the right angle, ''opposite'' represents the side opposite the given angle {{mvar|θ}}, and ''adjacent'' represents the side between the angle {{mvar|θ}} and the right angle.<ref>{{harvtxt|Protter|Morrey|1970|pp=APP-2, APP-3}}</ref><ref>{{Cite web|title=Sine, Cosine, Tangent|url=https://www.mathsisfun.com/sine-cosine-tangent.html|access-date=29 August 2020|website=www.mathsisfun.com}}</ref> {| | style="padding-left: 2em; padding-right: 2em; | ;sine: <math>\sin \theta = \frac \mathrm{opposite}\mathrm{hypotenuse}</math> | style="padding-left: 2em; padding-right: 2em; | ;cosecant: <math>\csc \theta = \frac \mathrm{hypotenuse}\mathrm{opposite}</math> |- | style="padding-left: 2em; padding-right: 2em; | ;cosine: <math>\cos \theta = \frac \mathrm{adjacent}\mathrm{hypotenuse}</math> | style="padding-left: 2em; padding-right: 2em; | ;secant: <math>\sec \theta = \frac \mathrm{hypotenuse}\mathrm{adjacent}</math> |- | style="padding-left: 2em; padding-right: 2em; | ;tangent: <math>\tan \theta = \frac \mathrm{opposite}\mathrm{adjacent}</math> | style="padding-left: 2em; padding-right: 2em; | ;cotangent: <math>\cot \theta = \frac \mathrm{adjacent}\mathrm{opposite}</math> |} [[mnemonics in trigonometry|Various mnemonics]] can be used to remember these definitions. In a right-angled triangle, the sum of the two acute angles is a right angle, that is, {{math|90°}} or {{math|{{sfrac|π|2}} [[radian]]s}}. Therefore <math>\sin(\theta)</math> and <math>\cos(90^\circ - \theta)</math> represent the same ratio, and thus are equal. This identity and analogous relationships between the other trigonometric functions are summarized in the following table. [[File:Periodic sine.svg|thumb|'''Top:''' Trigonometric function {{math|sin ''θ''}} for selected angles {{math|''θ''}}, {{math|{{pi}} − ''θ''}}, {{math|{{pi}} + ''θ''}}, and {{math|2{{pi}} − ''θ''}} in the four quadrants.<br>'''Bottom:''' Graph of sine versus angle. Angles from the top panel are identified.]] {| class="wikitable sortable" |+ Summary of relationships between trigonometric functions<ref>{{harvtxt|Protter|Morrey|1970|p=APP-7}}</ref> |- ! rowspan=2 | Function ! rowspan=2 | Description ! colspan=2 | [[List of trigonometric identities|Relationship]] |- ! using [[radian]]s ! using [[Degree (angle)|degree]]s |- ! sine |align=center|{{math|{{sfrac|opposite|hypotenuse}}}} | <math>\sin \theta = \cos\left(\frac{\pi}{2} - \theta \right) = \frac{1}{\csc \theta}</math> | <math>\sin x = \cos\left(90^\circ - x \right) = \frac{1}{\csc x}</math> |- ! cosine |align=center|{{math|{{sfrac|adjacent|hypotenuse}}}} | <math>\cos \theta = \sin\left(\frac{\pi}{2} - \theta \right) = \frac{1}{\sec \theta}\,</math> | <math>\cos x = \sin\left(90^\circ - x \right) = \frac{1}{\sec x}\,</math> |- ! tangent |align=center|{{math|{{sfrac|opposite|adjacent}}}} | <math>\tan \theta = \frac{\sin \theta}{\cos \theta} = \cot\left(\frac{\pi}{2} - \theta \right) = \frac{1}{\cot \theta} </math> | <math>\tan x = \frac{\sin x}{\cos x} = \cot\left(90^\circ - x \right) = \frac{1}{\cot x} </math> |- ! cotangent |align=center|{{math|{{sfrac|adjacent|opposite}}}} | <math>\cot \theta = \frac{\cos \theta}{\sin \theta} = \tan\left(\frac{\pi}{2} - \theta \right) = \frac{1}{\tan \theta} </math> | <math>\cot x = \frac{\cos x}{\sin x} = \tan\left(90^\circ - x \right) = \frac{1}{\tan x} </math> |- ! secant |align=center|{{math|{{sfrac|hypotenuse|adjacent}}}} | <math>\sec \theta = \csc\left(\frac{\pi}{2} - \theta \right) = \frac{1}{\cos \theta} </math> | <math>\sec x = \csc\left(90^\circ - x \right) = \frac{1}{\cos x} </math> |- ! cosecant |align=center|{{math|{{sfrac|hypotenuse|opposite}}}} | <math>\csc \theta = \sec\left(\frac{\pi}{2} - \theta \right) = \frac{1}{\sin \theta} </math> | <math>\csc x = \sec\left(90^\circ - x \right) = \frac{1}{\sin x} </math> |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Trigonometric functions
(section)
Add topic