Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Symmetric multiprocessing
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==History== The earliest production system with multiple identical processors was the Burroughs [[B5000]], which was functional around 1961. However at run-time this was [[Asymmetric multiprocessing#Burroughs B5000 and B5500|asymmetric]], with one processor restricted to application programs while the other processor mainly handled the operating system and hardware interrupts. The Burroughs D825 first implemented SMP in 1962.<ref>{{cite web|url=http://ei.cs.vt.edu/~history/Parallel.html|title=The History of the Development of Parallel Computing|author=Gregory V. Wilson|date=October 1994}}</ref><ref>{{cite web|url=http://ed-thelen.org/comp-hist/BRL64-b.html#BURROUGHS-D825|title=A Fourth Survey of Domestic Electronic Digital Computing Systems|author=Martin H. Weik|publisher=[[Ballistic Research Laboratories]], [[Aberdeen Proving Grounds]]|at=Burroughs D825|date=January 1964}}</ref> IBM offered dual-processor computer systems based on its [[IBM System/360|System/360]] [[IBM System/360 Model 65|Model 65]] and the closely related [[IBM System/360 Model 67|Model 67]]<ref>{{cite book | publisher = IBM | title = IBM System/360 Model 65 Functional Characteristics | id = A22-6884-3 | version = Fourth Edition | date = September 1968 | url = http://www.bitsavers.org/pdf/ibm/360/functional_characteristics/A22-6884-3_360-65_funcChar.pdf}}</ref> and 67β2.<ref>{{cite book | publisher = IBM | title = IBM System/360 Model 67 Functional Characteristics | id = GA27-2719-2 | url = http://www.bitsavers.org/pdf/ibm/360/functional_characteristics/GA27-2719-2_360-67_funcChar.pdf | version = Third Edition | date = February 1972}}</ref> The operating systems that ran on these machines were [[OS/360]] M65MP<ref>[http://doi.acm.org/10.1145/800186.810634 M65MP: An Experiment in OS/360 multiprocessing]</ref> and [[TSS/360]]. Other software developed at universities, notably the [[Michigan Terminal System]] (MTS), used both CPUs. Both processors could access data channels and initiate I/O. In OS/360 M65MP, peripherals could generally be attached to either processor since the operating system kernel ran on both processors (though with a "big lock" around the I/O handler).<ref>{{cite book |url=http://bitsavers.org/pdf/ibm/360/os/R21.7_Apr73/plm/GY28-6616-9_OS_IO_Superv_PLM_R21.7_Apr73.pdf |title=Program Logic Manual, OS I/O Supervisor Logic, Release 21 (R21.7) |publisher=IBM |id=GY28-6616-9 |edition=Tenth |date=April 1973}}</ref> The MTS supervisor (UMMPS) has the ability to run on both CPUs of the IBM System/360 model 67β2. Supervisor locks were small and used to protect individual common data structures that might be accessed simultaneously from either CPU.<ref>[https://1a9f2076-a-62cb3a1a-s-sites.googlegroups.com/site/michiganterminalsystem/documentation/documents/timeSharingSupervisorPrograms-1971.pdf?attachauth=ANoY7crPBadRVtxTmN8sqSjFc3xC84Q_pDpvpRo7VRWz0_Ql-UKQ2SVe6hJ7lVOjGZbLkOSXco8c9_ZI6TmQZS8EpBTMlByIPM4iByyUXlXE__YfWN0jqwIQglhyvR0oSxl0I_C0JenDItLzN4btLtkug9HSHRX1s-WtlkSQ-pzJLpczJYsuzTvZVIggSTW0arjTnQsls6xcrCsMcyl58Y98Q0Sw2yecmFLiTcYjnYrgAhLGSu9b2s28oV04R6_6p6fD8UUjvnRawHn7N6qFgRIEuGj4QuZlkthZM5_fZwaPyXvLxccgLCk%3D&attredirects=0 ''Time Sharing Supervisor Programs''] by Mike Alexander (May 1971) has information on MTS, TSS, CP/67, and Multics</ref> Other mainframes that supported SMP included the [[UNIVAC 1100/2200 series#1108|UNIVAC 1108 II]], released in 1965, which supported up to three CPUs, and the [[GE-600 series|GE-635 and GE-645]],<ref>{{cite book|url=http://www.bitsavers.org/pdf/ge/GE-6xx/CPB-371A_GE-635_System_Man_Jul64.pdf|title=GE-635 System Manual|date=July 1964|publisher=[[General Electric]]}}</ref><ref>{{cite book|url=http://www.bitsavers.org/pdf/ge/GE-645/GE-645_SystemMan_Jan68.pdf|title=GE-645 System Manual|date=January 1968|publisher=General Electric}}</ref> although [[General Comprehensive Operating System|GECOS]] on multiprocessor GE-635 systems ran in a master-slave asymmetric fashion, unlike [[Multics]] on multiprocessor GE-645 systems, which ran in a symmetric fashion.<ref>{{cite newsgroup|url=https://groups.google.com/d/msg/alt.folklore.computers/v-hkdKaPTXc/MX7UI3DgOokJ|title=Fear of Multiprocessing?|author=Richard Shetron|date=May 5, 1998|newsgroup=alt.folklore.computers|message-id=354e95a9.0@news.wizvax.net}}</ref> Starting with its version 7.0 (1972), [[Digital Equipment Corporation]]'s operating system [[TOPS-10]] implemented the SMP feature, the earliest system running SMP was the [[PDP-10|DECSystem 1077]] dual KI10 processor system.<ref>[http://www.ultimate.com/phil/pdp10/10periphs DEC 1077 and SMP]</ref> Later KL10 system could aggregate up to 8 CPUs in a SMP manner. In contrast, DECs first multi-processor [[VAX]] system, the VAX-11/782, was asymmetric,<ref>[http://www.bitsavers.org/pdf/dec/vax/EG-21731-18_VAX_Product_Sales_Guide_Apr82.pdf VAX Product Sales Guide, pages 1-23 and 1-24]: the VAX-11/782 is described as an asymmetric multiprocessing system in 1982</ref> but later VAX multiprocessor systems were SMP.<ref>[http://www.bitsavers.org/pdf/dec/vax/8800/EK-8840H-UG-001_88xx_System_Hardware_Users_Guide_Mar88.pdf VAX 8820/8830/8840 System Hardware User's Guide]: by 1988 the VAX operating system was SMP</ref> Early commercial Unix SMP implementations included the [[Sequent Computer Systems]] Balance 8000 (released in 1984) and Balance 21000 (released in 1986).<ref>{{Cite book |last1 = Hockney |first1 = R.W. |last2 = Jesshope |first2 = C.R. |title = Parallel Computers 2: Architecture, Programming and Algorithms |publisher = Taylor & Francis |year = 1988 | page = 46 |isbn = 0-85274-811-6}}</ref> Both models were based on 10 MHz [[National Semiconductor]] [[NS320xx|NS32032]] processors, each with a small write-through cache connected to a common memory to form a [[shared memory]] system. Another early commercial Unix SMP implementation was the NUMA based Honeywell Information Systems Italy XPS-100 designed by Dan Gielan of VAST Corporation in 1985. Its design supported up to 14 processors, but due to electrical limitations, the largest marketed version was a dual processor system. The operating system was derived and ported by VAST Corporation from AT&T 3B20 Unix SysVr3 code used internally within AT&T. Earlier non-commercial multiprocessing UNIX ports existed, including a port named MUNIX created at the [[Naval Postgraduate School]] by 1975.<ref>{{Cite web|url=https://core.ac.uk/download/pdf/36714194.pdf|title=MUNIX, A Multiprocessing Version Of UNIX|last=Hawley|first=John Alfred|date=June 1975|website=core.ac.uk|access-date=11 November 2018}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Symmetric multiprocessing
(section)
Add topic