Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Symmetric matrix
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties == ===Basic properties=== * The sum and difference of two symmetric matrices is symmetric. * This is not always true for the [[matrix multiplication|product]]: given symmetric matrices <math>A</math> and <math>B</math>, then <math>AB</math> is symmetric if and only if <math>A</math> and <math>B</math> [[commutativity|commute]], i.e., if <math>AB=BA</math>. * For any integer <math>n</math>, <math>A^n</math> is symmetric if <math>A</math> is symmetric. * If <math>A^{-1}</math> exists, it is symmetric if and only if <math>A</math> is symmetric. * Rank of a symmetric matrix <math>A</math> is equal to the number of non-zero eigenvalues of <math>A</math>. ===Decomposition into symmetric and skew-symmetric=== Any square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix. This decomposition is known as the Toeplitz decomposition. Let <math>\mbox{Mat}_n</math> denote the space of <math>n \times n</math> matrices. If <math>\mbox{Sym}_n</math> denotes the space of <math>n \times n</math> symmetric matrices and <math>\mbox{Skew}_n</math> the space of <math>n \times n</math> skew-symmetric matrices then <math>\mbox{Mat}_n = \mbox{Sym}_n + \mbox{Skew}_n</math> and <math>\mbox{Sym}_n \cap \mbox{Skew}_n = \{0\}</math>, i.e. <math display="block">\mbox{Mat}_n = \mbox{Sym}_n \oplus \mbox{Skew}_n , </math> where <math>\oplus</math> denotes the [[direct sum of modules|direct sum]]. Let <math>X \in \mbox{Mat}_n</math> then <math display="block">X = \frac{1}{2}\left(X + X^\textsf{T}\right) + \frac{1}{2}\left(X - X^\textsf{T}\right).</math> Notice that <math display="inline">\frac{1}{2}\left(X + X^\textsf{T}\right) \in \mbox{Sym}_n</math> and <math display="inline">\frac{1}{2} \left(X - X^\textsf{T}\right) \in \mathrm{Skew}_n</math>. This is true for every [[square matrix]] <math>X</math> with entries from any [[field (mathematics)|field]] whose [[characteristic (algebra)|characteristic]] is different from 2. A symmetric <math>n \times n</math> matrix is determined by <math>\tfrac{1}{2}n(n+1)</math> scalars (the number of entries on or above the [[main diagonal]]). Similarly, a [[skew-symmetric matrix]] is determined by <math>\tfrac{1}{2}n(n-1)</math> scalars (the number of entries above the main diagonal). === Matrix congruent to a symmetric matrix === Any matrix [[matrix congruence|congruent]] to a symmetric matrix is again symmetric: if <math>X</math> is a symmetric matrix, then so is <math>A X A^{\mathrm T}</math> for any matrix <math>A</math>. === Symmetry implies normality === A (real-valued) symmetric matrix is necessarily a [[normal matrix]]. === Real symmetric matrices === <!--If A is a skew-symmetric matrix, then ''iA'' (where ''i'' is an [[imaginary unit]]) is symmetric.--> Denote by <math>\langle \cdot,\cdot \rangle</math> the standard [[inner product]] on <math>\mathbb{R}^n</math>. The real <math>n \times n</math> matrix <math>A</math> is symmetric if and only if <math display="block">\langle Ax, y \rangle = \langle x, Ay \rangle \quad \forall x, y \in \mathbb{R}^n.</math> Since this definition is independent of the choice of [[basis (linear algebra)|basis]], symmetry is a property that depends only on the [[linear operator]] A and a choice of [[inner product]]. This characterization of symmetry is useful, for example, in [[differential geometry]], for each [[tangent space]] to a [[manifold]] may be endowed with an inner product, giving rise to what is called a [[Riemannian manifold]]. Another area where this formulation is used is in [[Hilbert space]]s. The finite-dimensional [[spectral theorem]] says that any symmetric matrix whose entries are [[real number|real]] can be [[diagonal matrix|diagonalized]] by an [[orthogonal matrix]]. More explicitly: For every real symmetric matrix <math>A</math> there exists a real orthogonal matrix <math>Q</math> such that <math>D = Q^{\mathrm T} A Q</math> is a [[diagonal matrix]]. Every real symmetric matrix is thus, [[up to]] choice of an [[orthonormal basis]], a diagonal matrix. If <math>A</math> and <math>B</math> are <math>n \times n</math> real symmetric matrices that commute, then they can be simultaneously diagonalized by an orthogonal matrix:<ref>{{Cite book|first=Richard |last=Bellman|title=Introduction to Matrix Analysis |language= en|edition=2nd|publisher=SIAM|year=1997|isbn=08-9871-399-4}}</ref> there exists a basis of <math>\mathbb{R}^n</math> such that every element of the basis is an [[eigenvector]] for both <math>A</math> and <math>B</math>. Every real symmetric matrix is [[Hermitian matrix|Hermitian]], and therefore all its [[eigenvalues]] are real. (In fact, the eigenvalues are the entries in the diagonal matrix <math>D</math> (above), and therefore <math>D</math> is uniquely determined by <math>A</math> up to the order of its entries.) Essentially, the property of being symmetric for real matrices corresponds to the property of being Hermitian for complex matrices. === Complex symmetric matrices {{anchor|Complex}}=== A complex symmetric matrix can be 'diagonalized' using a [[unitary matrix]]: thus if <math>A</math> is a complex symmetric matrix, there is a unitary matrix <math>U</math> such that <math>U A U^{\mathrm T}</math> is a real diagonal matrix with non-negative entries. This result is referred to as the '''Autonne–Takagi factorization'''. It was originally proved by [[Léon Autonne]] (1915) and [[Teiji Takagi]] (1925) and rediscovered with different proofs by several other mathematicians.<ref>{{harvnb|Horn|Johnson|2013|pp=263,278}}</ref><ref>See: *{{citation|first=L.|last= Autonne|title= Sur les matrices hypohermitiennes et sur les matrices unitaires|journal= Ann. Univ. Lyon|volume= 38|year=1915|pages= 1–77|url=https://gallica.bnf.fr/ark:/12148/bpt6k69553b}} *{{citation|first=T.|last= Takagi|title= On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau|journal= Jpn. J. Math.|volume= 1 |year=1925|pages= 83–93|doi= 10.4099/jjm1924.1.0_83|doi-access= free}} *{{citation|title=Symplectic Geometry|first=Carl Ludwig|last= Siegel|journal= American Journal of Mathematics|volume= 65|issue=1 |year=1943|pages=1–86|jstor= 2371774|doi=10.2307/2371774|id=Lemma 1, page 12}} *{{citation|first=L.-K.|last= Hua|title= On the theory of automorphic functions of a matrix variable I–geometric basis|journal= Amer. J. Math.|volume= 66 |issue= 3|year=1944|pages= 470–488|doi=10.2307/2371910|jstor= 2371910}} *{{citation|first=I.|last= Schur|title= Ein Satz über quadratische Formen mit komplexen Koeffizienten|journal=Amer. J. Math. |volume=67 |issue= 4|year=1945|pages=472–480|doi=10.2307/2371974|jstor= 2371974}} *{{citation|first1=R.|last1= Benedetti|first2=P.|last2= Cragnolini|title=On simultaneous diagonalization of one Hermitian and one symmetric form|journal= Linear Algebra Appl. |volume=57 |year=1984| pages=215–226|doi=10.1016/0024-3795(84)90189-7|doi-access=free}} </ref> In fact, the matrix <math>B=A^{\dagger} A</math> is Hermitian and [[Definiteness of a matrix|positive semi-definite]], so there is a unitary matrix <math>V</math> such that <math>V^{\dagger} B V</math> is diagonal with non-negative real entries. Thus <math>C=V^{\mathrm T} A V</math> is complex symmetric with <math>C^{\dagger}C</math> real. Writing <math>C=X+iY</math> with <math>X</math> and <math>Y</math> real symmetric matrices, <math>C^{\dagger}C=X^2+Y^2+i(XY-YX)</math>. Thus <math>XY=YX</math>. Since <math>X</math> and <math>Y</math> commute, there is a real orthogonal matrix <math>W</math> such that both <math>W X W^{\mathrm T}</math> and <math>W Y W^{\mathrm T}</math> are diagonal. Setting <math>U=W V^{\mathrm T}</math> (a unitary matrix), the matrix <math>UAU^{\mathrm T}</math> is complex diagonal. Pre-multiplying <math>U</math> by a suitable diagonal unitary matrix (which preserves unitarity of <math>U</math>), the diagonal entries of <math>UAU^{\mathrm T}</math> can be made to be real and non-negative as desired. To construct this matrix, we express the diagonal matrix as <math>UAU^\mathrm T = \operatorname{diag}(r_1 e^{i\theta_1},r_2 e^{i\theta_2}, \dots, r_n e^{i\theta_n})</math>. The matrix we seek is simply given by <math>D = \operatorname{diag}(e^{-i\theta_1/2},e^{-i\theta_2/2}, \dots, e^{-i\theta_n/2})</math>. Clearly <math>DUAU^\mathrm TD = \operatorname{diag}(r_1, r_2, \dots, r_n)</math> as desired, so we make the modification <math>U' = DU</math>. Since their squares are the eigenvalues of <math>A^{\dagger} A</math>, they coincide with the [[singular value]]s of <math>A</math>. (Note, about the eigen-decomposition of a complex symmetric matrix <math>A</math>, the Jordan normal form of <math>A</math> may not be diagonal, therefore <math>A</math> may not be diagonalized by any similarity transformation.)
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Symmetric matrix
(section)
Add topic