Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Specific impulse
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Rockets=== For any chemical rocket engine, the momentum transfer efficiency depends heavily on the effectiveness of the [[rocket nozzle|nozzle]]; the nozzle is the primary means of converting reactant energy (e.g. thermal or pressure energy) into a flow of momentum all directed the same way. Therefore, nozzle shape and effectiveness has a great impact on total momentum transfer from the reaction mass to the rocket. Efficiency of conversion of input energy to reactant energy also matters; be that thermal energy in combustion engines or electrical energy in [[ion engines]], the engineering involved in converting such energy to outbound momentum can have high impact on specific impulse. Specific impulse in turn has deep impacts on the achievable delta-v and associated orbits achievable, and (by the rocket equation) mass fraction required to achieve a given delta-v. Optimizing the tradeoffs between mass fraction and specific impulse is one of the fundamental engineering challenges in rocketry. Although the specific impulse has units equivalent to velocity, it almost never corresponds to any physical velocity. In chemical and cold gas rockets, the shape of the [[rocket nozzle|nozzle]] has a high impact on the energy-to-momentum conversion, and is never perfect, and there are other sources of losses and inefficiencies (e.g. the details of the combustion in such engines). As such, the physical exhaust velocity is higher than the "effective exhaust velocity", i.e. that "velocity" suggested by the specific impulse. In any case, the momentum exchanged and the mass used to generate it ''are'' physically real measurements. Typically, rocket nozzles work better when the ambient pressure is lower, i.e. better in space than in atmosphere. Ion engines operate without a nozzle, although they have other sources of losses such that the momentum transferred is lower than the physical exhaust velocity.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Specific impulse
(section)
Add topic