Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Sedimentary basin
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Widely-recognized types == Although no one basin classification scheme has been widely adopted, several common types of sedimentary basins are widely accepted and well understood as distinct types. Over its complete lifespan a single sedimentary basin can go through multiple phases and evolve from one of these types to another, such as a rift process going to completion to form a passive margin. In this case the sedimentary rocks of the rift basin phase are overlain by those rocks deposited during the passive margin phase. Hybrid basins where a single regional basin results from the processes that are characteristic of multiple of these types are also possible. {| class="wikitable" |+ Widely-recognized Types of Sedimentary Basins |- ! Sedimentary Basin Type !! Associated Type of Plate Boundary !! Description and Formation !! Modern, Active Examples !! Ancient (no longer active) Examples |- | [[Rift | Rift basin]] || [[Divergent boundary|Divergent]] || Rift basins are elongate sedimentary basins formed in depressions created by tectonically-induced thinning (stretching) of continental crust, generally bounded by normal faults that create [[graben]]s and [[half-graben]]s.<ref>{{cite book |title=Interior rift basins |date=1994 |publisher=American Association of Petroleum Geologists |location=Tulsa, Oklahoma |isbn=9780891813392}}</ref><ref>{{cite journal |last1=Burke |first1=K.C. |title=Rift Basins: Origin, History, and Distribution |journal=Offshore Technology Conference |date=1985 |doi=10.4043/4844-MS}}</ref> Some authors recognize two subtypes:<ref name="AllenandAllen" /> * ''Terrestrial Rift Valleys'' - largely subaerial valleys that are rifts in continental crust commonly with bimodal volcanism * ''Proto-oceanic rift troughs'' - incipient ocean basins where new oceanic crust is forming, flanked on either side by young rifted continental margins [[File:Riftxsection.jpg|300px|center|Typical rift formation in cross-section]] || ''Terrestrial rift valleys'' * [[Rio Grande Rift]]<ref>{{cite journal |last1=Olsen |first1=Kenneth H. |last2=Scott Baldridge |first2=W. |last3=Callender |first3=Jonathan F. |title=Rio Grande rift: An overview |journal=Tectonophysics |date=November 1987 |volume=143 |issue=1–3 |pages=119–139 |doi=10.1016/0040-1951(87)90083-7|bibcode=1987Tectp.143..119O }}</ref> * [[Upper Rhine Plain]] * [[East African Rift]]<ref>{{cite journal |last1=Frostick |first1=L.E. |title=Chapter 9 The east african rift basins |journal=Sedimentary Basins of the World |date=1997 |volume=3 |pages=187–209 |doi=10.1016/S1874-5997(97)80012-3|bibcode=1997SedBW...3..187F |isbn=9780444825711 }}</ref> ''Proto-oceanic rift troughs'' * [[Gulf of Suez Rift]] * [[Gulf of California]] || * [[Newark Basin]]<ref>{{cite journal |last1=Withjack |first1=M. O. |last2=Schlische |first2=R. W. |last3=Malinconico |first3=M. L. |last4=Olsen |first4=P. E. |title=Rift-basin development: lessons from the Triassic–Jurassic Newark Basin of eastern North America |journal=Geological Society, London, Special Publications |date=January 2013 |volume=369 |issue=1 |pages=301–321 |doi=10.1144/SP369.13|bibcode=2013GSLSP.369..301W |s2cid=140190041 }}</ref> * [[Fundy Basin]] * [[Midcontinent Rift System]] * [[West Antarctic Rift System]] * [[Oslo Graben]] * [[Reelfoot Rift]] |- | [[Passive margin]] || [[Divergent boundary|Divergent]] || Passive margins generally have deep sedimentary basins that form along the margin of a continent after two continents have completely rifted apart to become separated by an ocean.<ref>{{cite book |last1=Mann |first1=Paul |title=Encyclopedia of Marine Geosciences |chapter=Passive Plate Margin |date=2015 |pages=1–8 |doi=10.1007/978-94-007-6644-0_100-2|isbn=978-94-007-6644-0 }}</ref><ref>{{cite journal |last1=Roberts |first1=D.G. |last2=Bally |first2=A.W. |title=From rifts to passive margins |journal=Regional Geology and Tectonics: Phanerozoic Rift Systems and Sedimentary Basins |date=2012 |pages=18–31 |doi=10.1016/B978-0-444-56356-9.00001-8|isbn=9780444563569 }}</ref> Cooling and densification of the underlying lithosphere over tens of millions of years drives subsidence that allows thick accumulations of sediments eroded from the adjacent continent.<ref>{{cite journal |last1=Steckler |first1=M.S. |last2=Watts |first2=A.B. |title=Subsidence of the Atlantic-type continental margin off New York |journal=Earth and Planetary Science Letters |date=September 1978 |volume=41 |issue=1 |pages=1–13 |doi=10.1016/0012-821X(78)90036-5|bibcode=1978E&PSL..41....1S }}</ref><ref>{{cite journal |last1=Barr |first1=D. |title=Passive continental margin subsidence |journal=Journal of the Geological Society |date=September 1992 |volume=149 |issue=5 |pages=803–804 |doi=10.1144/gsjgs.149.5.0803|bibcode=1992JGSoc.149..803B |s2cid=129500164 }}</ref><ref>{{cite journal |last1=Bott |first1=M. H. P. |title=Passive margins and their subsidence |journal=Journal of the Geological Society |date=September 1992 |volume=149 |issue=5 |pages=805–812 |doi=10.1144/gsjgs.149.5.0805|bibcode=1992JGSoc.149..805B |s2cid=131298655 }}</ref> Some authors distinguish two subtypes based on volcanism during the early phases of margin development, ''[[non-volcanic passive margins]]'' and ''[[volcanic passive margin]]s''. [[File:PMfinal.png|300px|center|Typical passive margin cross-section]] Passive margins are long-lived and generally become inactive only as a result of the closing of a major ocean through continental collision resulting from plate tectonics. As a result the sedimentary record of inactive passive margins often are found as thick sedimentary sequences in mountain belts. For example the passive margins of the ancient [[Tethys Ocean]] are found in the mountain belts of the Alps and Himalayas that formed when the Tethys closed. || [[File:Globald.png|thumb|Global distribution of passive margins]] || * Tethys sedimentary sequence of the Tethys Himalaya (Tibet, Nepal)<ref>{{cite journal |last1=Liu |first1=Guanghua |last2=Einsele |first2=G. |title=Sedimentary history of the Tethyan basin in the Tibetan Himalayas |journal=Geologische Rundschau |date=March 1994 |volume=83 |issue=1 |pages=32–61 |doi=10.1007/BF00211893|bibcode=1994GeoRu..83...32L |s2cid=128478143 }}</ref><ref>{{cite journal |last1=Garzanti |first1=E. |title=Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin |journal=Journal of Asian Earth Sciences |date=October 1999 |volume=17 |issue=5–6 |pages=805–827 |doi=10.1016/S1367-9120(99)00017-6|bibcode=1999JAESc..17..805G }}</ref><ref>{{cite journal |last1=Jadoul |first1=Flavio |last2=Berra |first2=Fabrizio |last3=Garzanti |first3=Eduardo |title=The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous (South Tibet) |journal=Journal of Asian Earth Sciences |date=April 1998 |volume=16 |issue=2–3 |pages=173–194 |doi=10.1016/S0743-9547(98)00013-0|bibcode=1998JAESc..16..173J }}</ref> * Late Jurassic and Triassic sedimentary sequence of the Southern Alps (northern Italy)<ref>{{cite book |last1=Sarti |first1=Massimo |last2=Bosellini |first2=Alfonso |last3=Winterer |first3=Edward L. |title=Geology and Geophysics of Continental Margins |chapter=Basin Geometry and Architecture of a Tethyan Passive Margin, Southern Alps, Italy: Implications for Rifting Mechanisms |date=1992 |doi=10.1306/M53552C13|isbn=978-1-6298-1107-9 }}</ref><ref>{{cite journal |last1=Berra |first1=Fabrizio |last2=Galli |first2=Maria Teresa |last3=Reghellin |first3=Federico |last4=Torricelli |first4=Stefano |last5=Fantoni |first5=Roberto |title=Stratigraphic evolution of the Triassic-Jurassic succession in the Western Southern Alps (Italy): the record of the two-stage rifting on the distal passive margin of Adria |journal=Basin Research |date=June 2009 |volume=21 |issue=3 |pages=335–353 |doi=10.1111/j.1365-2117.2008.00384.x|bibcode=2009BasR...21..335B |hdl=2434/48580 |s2cid=128904701 |hdl-access=free }}</ref><ref>{{cite journal |last1=Wooler |first1=D. A. |last2=Smith |first2=A. G. |last3=White |first3=N. |title=Measuring lithospheric stretching on Tethyan passive margins |journal=Journal of the Geological Society |date=July 1992 |volume=149 |issue=4 |pages=517–532 |doi=10.1144/gsjgs.149.4.0517|bibcode=1992JGSoc.149..517W |s2cid=129531210 }}</ref> *Paleozoic sedimentary sequence of the southern Canadian Rocky Mountains<ref>{{cite journal |last1=Bond |first1=Gerard C. |last2=Kominz |first2=Michelle A. |title=Construction of tectonic subsidence curves for the early Paleozoic miogeocline, southern Canadian Rocky Mountains: Implications for subsidence mechanisms, age of breakup, and crustal thinning |journal=Geological Society of America Bulletin |date=1984 |volume=95 |issue=2 |pages=155–173 |doi=10.1130/0016-7606(1984)95<155:COTSCF>2.0.CO;2 |bibcode=1984GSAB...95..155B }}</ref><ref>{{cite journal |last1=Miall |first1=Andrew D. |title=Chapter 5 The Paleozoic Western Craton Margin |journal=Sedimentary Basins of the World |date=2008 |volume=5 |pages=181–209 |doi=10.1016/S1874-5997(08)00005-1|bibcode=2008SedBW...5..181M |isbn=9780444504258 }}</ref> *Paleozoic sedimentary rocks of the Grand Canyon<ref>{{cite web |title=Divergent Plate Boundary—Passive Continental Margins - Geology (U.S. National Park Service) |url=https://www.nps.gov/subjects/geology/plate-tectonics-passive-continental-margins.htm |website=www.nps.gov |language=en}}</ref> |- | [[Foreland basin|Foreland Basin]] || [[Convergent boundary|Convergent]] || An elongate basin that develops adjacent and parallel to an actively growing mountain belt when the immense weight created by the growing mountains on top of continental lithosphere causes the plate to bend downward.<ref>{{cite journal |last1=Beaumont |first1=C. |title=Foreland basins |journal=Geophysical Journal International |date=1 May 1981 |volume=65 |issue=2 |pages=291–329 |doi=10.1111/j.1365-246X.1981.tb02715.x|bibcode=1981GeoJ...65..291B |doi-access=free }}</ref><ref>{{cite journal |last1=DeCelles |first1=Peter G. |last2=Giles |first2=Katherine A. |title=Foreland basin systems |journal=Basin Research |date=June 1996 |volume=8 |issue=2 |pages=105–123 |doi=10.1046/j.1365-2117.1996.01491.x|bibcode=1996BasR....8..105D |url=http://ntur.lib.ntu.edu.tw/bitstream/246246/56541/1/ntu-96-R94241306-1.pdf }}</ref> Many authors recognize two subtypes of foreland basins: * ''Peripheral foreland basins'' - where the topographic load of a large mountain belt being formed and thrust onto a plate, usually as a result of orogenisis due to continental collision, causes continental lithosphere to bend downward along the mountain front. * ''Retroarc foreland basins'' - which form behind (landward from) an active volcanic arc associated with a convergent plate boundary [[File:Peripheralvs.Retroarc.png|500px|center|Peripheral vs. Retroarc foreland basins]] || ''Peripheral foreland basins'' * [[Molasse basin]] * [[Western Canadian Sedimentary Basin]] * [[Himalayan foreland basin]] * [[Persian Gulf]] * [[Junggar Basin]] ''Retroarc foreland basins'' * [[Andean foreland basins]] || * [[Junggar Basin]] * [[Alaska North Slope basin]] * [[Western Interior Seaway]] * [[Windermere Supergroup]] * [[Appalachian Basin]] |- | [[Back-arc basin]] || [[Convergent boundary|Convergent]] || Back-arc basins result from stretching and thinning of crust behind volcanic arcs resulting when tensional forces created at the plate boundary pull the overriding plate toward the subducting oceanic plate in a process known as [[Oceanic trench#Trench rollback|oceanic trench rollback]]. This only occurs when the subducting oceanic crust is older (>55 million years old), and therefore colder and denser, and being subducted at an angle greater than 30 degrees.<ref>{{cite journal |last1=Sdrolias |first1=Maria |last2=Müller |first2=R. Dietmar |title=Controls on back-arc basin formation |journal=Geochemistry, Geophysics, Geosystems |date=April 2006 |volume=7 |issue=4 |pages=2005GC001090 |doi=10.1029/2005GC001090|bibcode=2006GGG.....7.4016S |s2cid=129068818 |doi-access=free }}</ref><ref>{{cite journal |last1=Forsyth |first1=D. |last2=Uyeda |first2=S. |title=On the Relative Importance of the Driving Forces of Plate Motion |journal=Geophysical Journal International |date=1 October 1975 |volume=43 |issue=1 |pages=163–200 |doi=10.1111/j.1365-246X.1975.tb00631.x|bibcode=1975GeoJ...43..163F |doi-access=free }}</ref><ref>{{cite journal |last1=Nakakuki |first1=Tomoeki |last2=Mura |first2=Erika |title=Dynamics of slab rollback and induced back-arc basin formation |journal=Earth and Planetary Science Letters |date=January 2013 |volume=361 |pages=287–297 |doi=10.1016/j.epsl.2012.10.031|bibcode=2013E&PSL.361..287N }}</ref> [[File:Sumatra-subduction.jpg|400px|center|Schematic cross-section of a typical convergent plate boundary showing formation of back-arc and forearc basins]] || [[File:BAB of the World -Converted-.jpg|thumb]] * [[Sea of Japan]] * [[Tyrrhenian Sea]] * [[North Fiji Basin]] * [[Lau Basin]] || * [[Pannonian Basin]] * [[Rhenohercynian Zone]] |- | [[Forearc basin]] || [[Convergent boundary|Convergent]] || A sedimentary basin formed in association with a convergent plate tectonic boundary in the gap between an active [[volcanic arc]] and the associated [[Oceanic trench|trench]], thus above the subducting oceanic plate. The formation of a forearc basin is often created by the vertical growth of an [[accretionary wedge]] that acts as a linear dam, parallel to the volcanic arc, creating a depression in which sediments can accumulate. <ref>{{cite journal |last1=Noda |first1=Atsushi |title=Forearc basins: Types, geometries, and relationships to subduction zone dynamics |journal=Geological Society of America Bulletin |date=May 2016 |volume=128 |issue=5–6 |pages=879–895 |doi=10.1130/B31345.1|bibcode=2016GSAB..128..879N }}</ref><ref>{{cite journal |last1=Condie |first1=Kent C. |title=Tectonic settings |journal=Earth as an Evolving Planetary System |date=2022 |pages=39–79 |doi=10.1016/B978-0-12-819914-5.00002-0|isbn=9780128199145 }}</ref><ref name="Stratigraphic signatures of forearc">{{cite journal |last1=Mannu |first1=Utsav |last2=Ueda |first2=Kosuke |last3=Willett |first3=Sean D. |last4=Gerya |first4=Taras V. |last5=Strasser |first5=Michael |title=Stratigraphic signatures of forearc basin formation mechanisms: STRATIGRAPHY OF FOREARC BASINS |journal=Geochemistry, Geophysics, Geosystems |date=June 2017 |volume=18 |issue=6 |pages=2388–2410 |doi=10.1002/2017GC006810|s2cid=133772159 }}</ref> [[File:Franciscan subduction model.gif|thumb|center|350px|Schematic diagram of the California continental margin during the Cretaceous, showing the deposition of the Great Valley Sequence in a forearc basin between the Franciscan accretionary wedge and the volcanic arc of the Sierra Nevada]] || * [[Mentawai Strait]] (aka Bengkulu-Mantawai forearc basin)<ref>{{cite journal |last1=Schlüter |first1=H. U. |last2=Gaedicke |first2=C. |last3=Roeser |first3=H. A. |last4=Schreckenberger |first4=B. |last5=Meyer |first5=H. |last6=Reichert |first6=C. |last7=Djajadihardja |first7=Y. |last8=Prexl |first8=A. |title=Tectonic features of the southern Sumatra-western Java forearc of Indonesia: TECTONICS OF SOUTHERN SUMATRA |journal=Tectonics |date=October 2002 |volume=21 |issue=5 |pages=11–1–11–15 |doi=10.1029/2001TC901048|s2cid=129399341 |doi-access=free }}</ref> * Magdalena Shelf<ref>{{cite journal |last1=Edgar A |first1=Mastache-Román |last2=Mario |first2=González-Escobar |title=Forearc Basin: Characteristics of the Subsurface in Magdalena Shelf, Baja California, Mexico, from the Interpretation of Seismic-Reflection Profiles |journal=International Journal of Earth Science and Geophysics |date=17 December 2020 |volume=6 |issue=2 |doi=10.35840/2631-5033/1841|s2cid=234492339 |doi-access=free }}</ref> * [[Nias Basin]] * [[Strait of Georgia]]<ref>{{cite journal |last1=Dash |first1=R. K. |last2=Spence |first2=G. D. |last3=Riedel |first3=M. |last4=Hyndman |first4=R. D. |last5=Brocher |first5=T. M. |title=Upper-crustal structure beneath the Strait of Georgia, Southwest British Columbia |journal=Geophysical Journal International |date=August 2007 |volume=170 |issue=2 |pages=800–812 |doi=10.1111/j.1365-246X.2007.03455.x|bibcode=2007GeoJI.170..800D |doi-access=free }}</ref><ref>{{cite journal |last1=Barrie |first1=J. Vaughn |last2=Hill |first2=Philip R. |title=Holocene faulting on a tectonic margin: Georgia Basin, British Columbia, Canada |journal=Geo-Marine Letters |date=1 May 2004 |volume=24 |issue=2 |pages=86–96 |doi=10.1007/s00367-003-0166-6|bibcode=2004GML....24...86B |s2cid=140710220 }}</ref> || * [[Great Valley Sequence]]<ref>{{cite journal |last1=Orme |first1=Devon A. |last2=Surpless |first2=Kathleen D. |title=The birth of a forearc: The basal Great Valley Group, California, USA |journal=Geology |date=1 August 2019 |volume=47 |issue=8 |pages=757–761 |doi=10.1130/G46283.1|bibcode=2019Geo....47..757O |s2cid=195814333 |doi-access=free }}</ref> |- | [[Oceanic trench]] || [[Convergent boundary|Convergent]] || Trench basins are deep linear depressions formed where a subducting oceanic plate descends into the mantle, beneath the overriding continental (Andean type) or oceanic plate (Mariana type). Trenches form in the deep ocean but, particularly where the overriding plate is continental crust they can accumulate thick sequences of sediments from eroding coastal mountains. Smaller 'trench slope basins' can form in association with a trench can form directly atop the associated accretionary prism as it grows and changes shape creating ponded basins.<ref>{{cite journal |last1=Underwood |first1=Michael B. |last2=Moore |first2=Gregory F. |title=Trenches and Trench-Slope Basins |journal=In Busby, C.J., and Ingersoll, R.V., Eds., Tectonics of Sedimentary Basins |date=1995 |pages=179–219}}</ref><ref>{{cite book |last1=Draut |first1=Amy E. |last2=Clift |first2=Peter D. |chapter=Basins in ARC-Continent Collisions |title=Tectonics of Sedimentary Basins |date=30 January 2012 |pages=347–368 |doi=10.1002/9781444347166.ch17|isbn=9781444347166 }}</ref> [[File:Subduction Trench Schematic.jpg|300px|center|Trench fill sedimentary basin in the context of a convergent plate boundary]] || * [[Middle America Trench]]<ref>{{cite journal |last1=Ross |first1=David A. |title=Sediments of the Northern Middle America Trench |journal=Geological Society of America Bulletin |date=1971 |volume=82 |issue=2 |pages=303 |doi=10.1130/0016-7606(1971)82[303:SOTNMA]2.0.CO;2}}</ref> * Western edge of Vancouver Island * [[Aleutian Trench]] * [[Japan Trench]] * [[Sunda Trench]] * [[Peru–Chile Trench]]<ref>{{cite journal |title=Sedimentation in the Chile Trench: Petrofacies and Provenance |journal=SEPM Journal of Sedimentary Research |date=1987 |volume=57 |doi=10.1306/212F8AA3-2B24-11D7-8648000102C1865D|last1=Todd m. Thornburg |first1=Laverne d. Kulm }}</ref> || * [[Farallon Trench]] * [[Tethyan Trench]] |- | [[Pull-apart basin]] || [[Transform fault|Transform]] || [[File:Pull Apart Basin.png|250px|thumb|right|Schematic diagram of the formation of a pull-apart basin]] <!-- [[File:Cross Section.png|250px|thumb|right|Schematic diagram of a pull-apart basin in cross-section]] --> Pull-apart basins is are created along major strike-slip faults where a bend in the fault geometry or the splitting of the fault into two or more faults creates tensional forces that cause crustal thinning or stretching due to extension, creating a regional depression.<ref>{{cite book |last1=Gürbüz |first1=Alper |title=Encyclopedia of Marine Geosciences |chapter=Pull-Apart Basin |date=2014 |pages=1–8 |doi=10.1007/978-94-007-6644-0_116-1|isbn=978-94-007-6644-0 }}</ref><ref>{{cite journal |last1=Farangitakis |first1=Georgios-Pavlos |last2=McCaffrey |first2=Ken J. W. |last3=Willingshofer |first3=Ernst |last4=Allen |first4=Mark B. |last5=Kalnins |first5=Lara M. |last6=Hunen |first6=Jeroen |last7=Persaud |first7=Patricia |last8=Sokoutis |first8=Dimitrios |title=The structural evolution of pull-apart basins in response to changes in plate motion |journal=Basin Research |date=April 2021 |volume=33 |issue=2 |pages=1603–1625 |doi=10.1111/bre.12528|bibcode=2021BasR...33.1603F |s2cid=230608127 |doi-access=free |hdl=20.500.11820/9a3b7330-0e21-4142-a35d-4abfdfb10210 |hdl-access=free }}</ref><ref>{{cite journal |last1=E.Wu |first1=Jonathan |last2=McClay |first2=Ken |last3=Whitehouse |first3=Paul |last4=Dooley |first4=Tim |title=4D analogue modelling of transtensional pull-apart basins |journal=Phanerozoic Regional Geology of the World |date=2012 |pages=700–730 |doi=10.1016/B978-0-444-53042-4.00025-X|isbn=9780444530424 }}</ref> Frequently, the basins are rhombic, S-like or Z-like in shape.<ref>{{cite journal |last1=Gürbüz |first1=Alper |title=Geometric characteristics of pull-apart basins |journal=Lithosphere |date=June 2010 |volume=2 |issue=3 |pages=199–206 |doi=10.1130/L36.1|bibcode=2010Lsphe...2..199G |doi-access=free }}</ref> || * [[Dead Sea]]<ref>{{cite journal |last1=Ben-Avraham |first1=Z. |last2=Lazar |first2=M. |last3=Garfunkel |first3=Z. |last4=Reshef |first4=M. |last5=Ginzburg |first5=A. |last6=Rotstein |first6=Y. |last7=Frieslander |first7=U. |last8=Bartov |first8=Y. |last9=Shulman |first9=H. |title=Structural styles along the Dead Sea Fault |journal=Regional Geology and Tectonics: Phanerozoic Passive Margins, Cratonic Basins and Global Tectonic Maps |date=2012 |pages=616–633 |doi=10.1016/B978-0-444-56357-6.00016-0|isbn=9780444563576 }}</ref> * [[Los Angeles Basin]] * [[Cayman Trough]] * [[Salton Trough]] || * [[Meneage#Geology|Gramscatho Basin]]<ref name="BarnesAndrews">{{cite journal | title=Upper Palaeozoic ophiolite generation and obduction in south Cornwall | last1=Barnes | first1=R.P. | last2=Andrews | first2=J.R. | journal=Journal of the Geological Society | year=1986 | volume=143 | issue=1 | pages=117–124 | doi=10.1144/gsjgs.143.1.0117| bibcode=1986JGSoc.143..117B | s2cid=131212202 }}</ref> * Ridge Basin<ref>{{cite book |last1=Link |first1=Martin H. |last2=Osborne |first2=Robert H. |chapter=Lacustrine Facies in the Pliocene Ridge Basin Group: Ridge Basin, California |title=Modern and Ancient Lake Sediments |date=24 November 1978 |pages=169–187 |doi=10.1002/9781444303698.ch9|isbn=9780632002344 }}</ref><ref>{{cite journal |last1=May |first1=S |last2=Ehman |first2=K |last3=Crowell |first3=J.C. |title=A new angle on the tectonic evolution of the Ridge basin, a strike-slip basin in southern California |journal=Geological Society of America Bulletin |date=1993 |volume=105 |issue=10 |pages=1357–1372 |doi=10.1130/0016-7606(1993)105<1357:ANAOTT>2.3.CO;2 |bibcode=1993GSAB..105.1357M |url=https://doi.org/10.1130/0016-7606(1993)105<1357:ANAOTT>2.3.CO;2}}</ref> |- | Cratonic basin (Intracratonic basin) || None || A broad comparatively shallow basin formed far from the edge of a continental craton as a result of prolonged, broadly distributed but slow subsidence of the continental lithosphere relative to the surrounding area. They are sometimes referred to as intracratonic sag basins. They tend to be subcircular in shape and are commonly filled with shallow water marine or terrestrial sedimentary rocks that remain flat-lying and relatively undeformed over long periods of time due to the long-lived tectonic stability of the underlying craton. The geodynamic forces that create them remain poorly understood.<ref name="Selley Sonnenberg"/><ref>{{cite journal |last1=Daly |first1=M. C. |last2=Fuck |first2=R. A. |last3=Julià |first3=J. |last4=Macdonald |first4=D. I. M. |last5=Watts |first5=A. B. |title=Cratonic basin formation: a case study of the Parnaíba Basin of Brazil |journal=Geological Society, London, Special Publications |date=January 2018 |volume=472 |issue=1 |pages=1–15 |doi=10.1144/SP472.20|bibcode=2018GSLSP.472....1D |s2cid=134985002 |doi-access=free }}</ref><ref>{{cite journal |last1=Watts |first1=A. B. |last2=Tozer |first2=B. |last3=Daly |first3=M. C. |last4=Smith |first4=J. |title=A comparative study of the Parnaíba, Michigan and Congo cratonic basins |journal=Geological Society, London, Special Publications |date=January 2018 |volume=472 |issue=1 |pages=45–66 |doi=10.1144/SP472.6|bibcode=2018GSLSP.472...45W |s2cid=135436543 }}</ref><ref>{{cite book |last1=Allen |first1=Philip A. |last2=Armitage |first2=John J. |chapter=Cratonic Basins |title=Tectonics of Sedimentary Basins |date=30 January 2012 |pages=602–620 |doi=10.1002/9781444347166.ch30|isbn=9781444347166 }}</ref><ref>{{cite journal |last1=Klein |first1=George deV. |last2=Hsui |first2=Albert T. |title=Origin of cratonic basins |journal=Geology |date=December 1987 |volume=15 |issue=12 |pages=1094–1098 |doi=10.1130/0091-7613(1987)15<1094:OOCB>2.0.CO;2|bibcode=1987Geo....15.1094D }}</ref><ref>{{cite journal |last1=Burgess |first1=Peter M. |title=Phanerozoic Evolution of the Sedimentary Cover of the North American Craton |journal=The Sedimentary Basins of the United States and Canada |date=2019 |pages=39–75 |doi=10.1016/B978-0-444-63895-3.00002-4|isbn=9780444638953 |s2cid=149587414 }}</ref><ref>{{cite journal |last1=Middleton |first1=M. F. |title=A model for the formation of intracratonic sag basins |journal=Geophysical Journal International |date=December 1989 |volume=99 |issue=3 |pages=665–676 |doi=10.1111/j.1365-246X.1989.tb02049.x|doi-access=free |bibcode=1989GeoJI..99..665M |s2cid=129787753 }}</ref> || * [[Barents Sea]] * [[Chad Basin]] || * [[Michigan Basin]] * [[Williston Basin]] * Hudson Bay Basin<ref>{{cite journal |last1=Pinet |first1=Nicolas |last2=Lavoie |first2=Denis |last3=Dietrich |first3=Jim |last4=Hu |first4=Kezhen |last5=Keating |first5=Pierre |title=Architecture and subsidence history of the intracratonic Hudson Bay Basin, northern Canada |journal=Earth-Science Reviews |date=October 2013 |volume=125 |pages=1–23 |doi=10.1016/j.earscirev.2013.05.010|bibcode=2013ESRv..125....1P }}</ref> * [[Uinta Mountains|Uinta Mountain Group]] * [[Amadeus Basin]]<ref>{{cite journal |last1=Lambeck |first1=Kurt |title=Structure and evolution of the intracratonic basins of central Australia |journal=Geophysical Journal International |date=September 1983 |volume=74 |issue=3 |pages=843–886 |doi=10.1111/j.1365-246X.1983.tb01907.x|doi-access=free }}</ref> * [[Paraná Basin]] |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Sedimentary basin
(section)
Add topic