Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Random variable
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Standard case=== In many cases, <math>X</math> is [[Real number|real-valued]], i.e. <math>E = \mathbb{R}</math>. In some contexts, the term [[random element]] (see [[#Extensions|extensions]]) is used to denote a random variable not of this form. {{Anchor|Discrete random variable}}When the [[Image (mathematics)|image]] (or range) of <math>X</math> is finite or [[countable set|countably]] infinite, the random variable is called a '''discrete random variable'''<ref name="Yates">{{cite book | last1 = Yates | first1 = Daniel S. | last2 = Moore | first2 = David S | last3 = Starnes | first3 = Daren S. | year = 2003 | title = The Practice of Statistics | edition = 2nd | publisher = [[W. H. Freeman and Company|Freeman]] | location = New York | url = http://bcs.whfreeman.com/yates2e/ | isbn = 978-0-7167-4773-4 | url-status = dead | archive-url = https://web.archive.org/web/20050209001108/http://bcs.whfreeman.com/yates2e/ | archive-date = 2005-02-09 }}</ref>{{rp|399}} and its distribution is a [[discrete probability distribution]], i.e. can be described by a [[probability mass function]] that assigns a probability to each value in the image of <math>X</math>. If the image is uncountably infinite (usually an [[Interval (mathematics)|interval]]) then <math>X</math> is called a '''continuous random variable'''.<ref>{{Cite web|title=Random Variables|url=http://www.stat.yale.edu/Courses/1997-98/101/ranvar.htm|access-date=2020-08-21|website=www.stat.yale.edu}}</ref><ref>{{Cite journal|last1=Dekking|first1=Frederik Michel|last2=Kraaikamp|first2=Cornelis|last3=Lopuhaä|first3=Hendrik Paul|last4=Meester|first4=Ludolf Erwin|date=2005|title=A Modern Introduction to Probability and Statistics|url=https://doi.org/10.1007/1-84628-168-7|journal=Springer Texts in Statistics|language=en-gb|doi=10.1007/1-84628-168-7|isbn=978-1-85233-896-1|issn=1431-875X}}</ref> In the special case that it is [[absolutely continuous]], its distribution can be described by a [[probability density function]], which assigns probabilities to intervals; in particular, each individual point must necessarily have probability zero for an absolutely continuous random variable. Not all continuous random variables are absolutely continuous.<ref>{{cite book|author1=L. Castañeda |author2=V. Arunachalam |author3=S. Dharmaraja |name-list-style=amp |title = Introduction to Probability and Stochastic Processes with Applications | year = 2012 | publisher= Wiley | page = 67 | url=https://books.google.com/books?id=zxXRn-Qmtk8C&pg=PA67 |isbn=9781118344941 }}</ref> Any random variable can be described by its [[cumulative distribution function]], which describes the probability that the random variable will be less than or equal to a certain value.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Random variable
(section)
Add topic