Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Quadratic reciprocity
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Factoring ''n''<sup>2</sup> β 5=== Consider the polynomial <math>f(n) = n^2 - 5</math> and its values for <math>n \in \N.</math> The prime factorizations of these values are given as follows: {| class="wikitable" style="text-align:right;" |- ! ''n'' !! colspan=2 | {{tmath|f(n)}} || !! ''n'' !! colspan=2 | {{tmath|f(n)}} || !! ''n'' !! colspan=2 | {{tmath|f(n)}} |- | 1 || β4 || β2<sup>2</sup> || || 16 || 251 || 251 || || 31 || 956 || 2<sup>2</sup>⋅239 |- | 2 || β1 || β1 || || 17 || 284 || 2<sup>2</sup>⋅71 || || 32 || 1019 || 1019 |- | 3 || 4 || 2<sup>2</sup> || || 18 || 319 || 11⋅29 || || 33 || 1084 || 2<sup>2</sup>⋅271 |- | 4 || 11 || 11 || || 19 || 356 || 2<sup>2</sup>⋅89 || || 34 || 1151 || 1151 |- | 5 || 20 || 2<sup>2</sup>⋅5 || || 20 || 395 || 5⋅79 || || 35 || 1220 || 2<sup>2</sup>⋅5⋅61 |- | 6 || 31 || 31 || || 21 || 436 || 2<sup>2</sup>⋅109 || || 36 || 1291 || 1291 |- | 7 || 44 || 2<sup>2</sup>⋅11 || || 22 || 479 || 479 || || 37 || 1364 || 2<sup>2</sup>⋅11⋅31 |- | 8 || 59 || 59 || || 23 || 524 || 2<sup>2</sup>⋅131 || || 38 || 1439 || 1439 |- | 9 || 76 || 2<sup>2</sup>⋅19 || || 24 || 571 || 571 || || 39 || 1516 || 2<sup>2</sup>⋅379 |- | 10 || 95 || 5⋅19 || || 25 || 620 || 2<sup>2</sup>⋅5⋅31 || || 40 || 1595 || 5⋅11⋅29 |- | 11 || 116 || 2<sup>2</sup>⋅29 || || 26 || 671 || 11⋅61 || || 41 || 1676 || 2<sup>2</sup>⋅419 |- | 12 || 139 || 139 || || 27 || 724 || 2<sup>2</sup>⋅181 || || 42 || 1759 || 1759 |- | 13 || 164 || 2<sup>2</sup>⋅41 || || 28 || 779 || 19⋅41 || || 43 || 1844 || 2<sup>2</sup>⋅461 |- | 14 || 191 || 191 || || 29 || 836 || 2<sup>2</sup>⋅11⋅19 || || 44 || 1931 || 1931 |- | 15 || 220 || 2<sup>2</sup>⋅5⋅11 || || 30 || 895 || 5⋅179 || || 45 || 2020 || 2<sup>2</sup>⋅5⋅101 |} The prime factors <math>p</math> dividing <math>f(n)</math> are <math>p=2,5</math>, and every prime whose final digit is <math>1</math> or <math>9</math>; no primes ending in <math>3</math> or <math>7</math> ever appear. Now, <math>p</math> is a prime factor of some <math>n^2-5</math> whenever <math>n^2 - 5 \equiv 0 \bmod p</math>, i.e. whenever <math>n^2 \equiv 5 \bmod p,</math> i.e. whenever 5 is a quadratic residue modulo <math>p</math>. This happens for <math>p= 2, 5</math> and those primes with <math>p\equiv 1, 4 \bmod 5,</math> and the latter numbers <math>1=(\pm1)^2</math> and <math>4=(\pm2)^2</math> are precisely the quadratic residues modulo <math>5</math>. Therefore, except for <math>p = 2,5</math>, we have that <math>5</math> is a quadratic residue modulo <math>p</math> iff <math>p</math> is a quadratic residue modulo <math>5</math>. The law of quadratic reciprocity gives a similar characterization of prime divisors of <math>f(n)=n^2 - q</math> for any prime ''q'', which leads to a characterization for any integer <math>q</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Quadratic reciprocity
(section)
Add topic