Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Probability mass function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Measure theoretic formulation== A probability mass function of a discrete random variable <math>X</math> can be seen as a special case of two more general measure theoretic constructions: the [[probability distribution|distribution]] of <math>X</math> and the [[probability density function]] of <math>X</math> with respect to the [[counting measure]]. We make this more precise below. Suppose that <math>(A, \mathcal A, P)</math> is a [[probability space]] and that <math>(B, \mathcal B)</math> is a measurable space whose underlying [[sigma algebra|σ-algebra]] is discrete, so in particular contains singleton sets of <math>B</math>. In this setting, a random variable <math> X \colon A \to B</math> is discrete provided its image is countable. The [[pushforward measure]] <math>X_{*}(P)</math>—called the distribution of <math>X</math> in this context—is a probability measure on <math>B</math> whose restriction to singleton sets induces the probability mass function (as mentioned in the previous section) <math>f_X \colon B \to \mathbb R</math> since <math>f_X(b)=P( X^{-1}( b ))=P(X=b)</math> for each <math>b \in B</math>. Now suppose that <math>(B, \mathcal B, \mu)</math> is a [[measure space]] equipped with the counting measure <math>\mu</math>. The probability density function <math>f</math> of <math>X</math> with respect to the counting measure, if it exists, is the [[Radon–Nikodym derivative]] of the pushforward measure of <math>X</math> (with respect to the counting measure), so <math> f = d X_*P / d \mu</math> and <math>f</math> is a function from <math>B</math> to the non-negative reals. As a consequence, for any <math>b \in B</math> we have <math display="block">P(X=b)=P( X^{-1}( b) ) = X_*(P)(b) = \int_{ b } f d \mu = f(b),</math> demonstrating that <math>f</math> is in fact a probability mass function. When there is a natural order among the potential outcomes <math>x</math>, it may be convenient to assign numerical values to them (or ''n''-tuples in case of a discrete [[multivariate random variable]]) and to consider also values not in the [[Image (mathematics)|image]] of <math>X</math>. That is, <math>f_X</math> may be defined for all [[real number]]s and <math>f_X(x)=0</math> for all <math>x \notin X(S)</math> as shown in the figure. The image of <math>X</math> has a [[countable]] subset on which the probability mass function <math>f_X(x)</math> is one. Consequently, the probability mass function is zero for all but a countable number of values of <math>x</math>. The discontinuity of probability mass functions is related to the fact that the [[cumulative distribution function]] of a discrete random variable is also discontinuous. If <math>X</math> is a discrete random variable, then <math> P(X = x) = 1</math> means that the casual event <math>(X = x)</math> is certain (it is true in 100% of the occurrences); on the contrary, <math>P(X = x) = 0</math> means that the casual event <math>(X = x)</math> is always impossible. This statement isn't true for a [[continuous random variable]] <math>X</math>, for which <math>P(X = x) = 0</math> for any possible <math>x</math>. [[Discretization of continuous features|Discretization]] is the process of converting a continuous random variable into a discrete one.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Probability mass function
(section)
Add topic