Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Parallelepiped
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Volume== [[File:Parallelepiped-bf.svg|thumb|upright=1.2|Parallelepiped, generated by three vectors]] A parallelepiped is a [[Prism (geometry)|prism]] with a [[parallelogram]] as base. Hence the volume <math>V</math> of a parallelepiped is the product of the base area <math>B</math> and the height <math>h</math> (see diagram). With *<math>B = \left|\mathbf a\right| \cdot \left|\mathbf b\right| \cdot \sin \gamma = \left|\mathbf a \times \mathbf b\right|</math> (where <math>\gamma</math> is the angle between vectors <math>\mathbf a</math> and <math>\mathbf b</math>), and *<math>h = \left|\mathbf c\right| \cdot \left|\cos \theta\right|</math> (where <math>\theta</math> is the angle between vector <math>\mathbf c</math> and the [[Normal (geometry)|normal]] to the base), one gets: <math display="block">V = B\cdot h = \left(\left|\mathbf a\right| \left|\mathbf b\right| \sin \gamma\right) \cdot \left|\mathbf c\right| \left|\cos \theta\right| = \left|\mathbf a \times \mathbf b\right| \left|\mathbf c\right| \left|\cos \theta\right| = \left|\left(\mathbf{a} \times \mathbf{b}\right) \cdot \mathbf{c}\right|.</math> The mixed product of three vectors is called [[triple product]]. It can be described by a [[determinant]]. Hence for <math>\mathbf a=(a_1,a_2,a_3)^\mathsf{T}, ~\mathbf b=(b_1,b_2,b_3)^\mathsf{T}, ~\mathbf c=(c_1,c_2,c_3)^\mathsf{T},</math> the volume is: {{NumBlk||<math display="block">V = \left| \det \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \right| . </math>|{{EquationRef|V1}}}} Another way to prove '''({{EquationNote|V1}})''' is to use the scalar component in the direction of <math>\mathbf a\times\mathbf b</math> of vector <math>\mathbf c</math>: <math display="block">\begin{align} V = \left|\mathbf a\times\mathbf b\right| \left|\operatorname{scal}_{\mathbf a \times \mathbf b} \mathbf c\right| = \left|\mathbf a\times\mathbf b\right| \frac{\left|\left(\mathbf a\times \mathbf b\right) \cdot \mathbf c\right|}{\left|\mathbf a\times \mathbf b\right|} = \left|\left(\mathbf a\times \mathbf b\right) \cdot \mathbf c\right|. \end{align}</math> The result follows. An alternative representation of the volume uses geometric properties (angles and edge lengths) only: {{NumBlk||<math display="block">V = abc\sqrt{1+2\cos(\alpha)\cos(\beta)\cos(\gamma)-\cos^2(\alpha)-\cos^2(\beta)-\cos^2(\gamma)},</math>|{{EquationRef|V2}}}} where <math>\alpha = \angle(\mathbf b, \mathbf c)</math>, <math>\beta = \angle(\mathbf a,\mathbf c)</math>, <math>\gamma = \angle(\mathbf a,\mathbf b) </math>, and <math>a,b,c </math> are the edge lengths. {{math proof | title = Proof of ({{EquationNote|V2}}) | proof = The proof of '''({{EquationNote|V2}})''' uses [[Determinant#Properties of the determinant|properties of a determinant]] and the [[dot product#geometric definition|geometric interpretation of the dot product]]: Let <math>M</math> be the 3Γ3-matrix, whose columns are the vectors <math>\mathbf a, \mathbf b, \mathbf c</math> (see above). Then the following is true: <math display="block">\begin{align} V^2 &= \left(\det M\right)^2 = \det M \det M = \det M^\mathsf{T} \det M = \det (M^\mathsf{T} M) \\ &= \det \begin{bmatrix} \mathbf a\cdot \mathbf a & \mathbf a\cdot \mathbf b & \mathbf a\cdot \mathbf c \\ \mathbf b\cdot \mathbf a & \mathbf b\cdot \mathbf b & \mathbf b\cdot \mathbf c \\ \mathbf c\cdot \mathbf a & \mathbf c\cdot \mathbf b & \mathbf c\cdot \mathbf c \end{bmatrix} \\ &=\ a^2\left(b^2c^2 - b^2c^2\cos^2(\alpha)\right) \\ &\quad-ab\cos(\gamma)\left(ab\cos(\gamma)c^2-ac\cos(\beta)\;bc\cos(\alpha)\right) \\ &\quad+ac\cos(\beta)\left(ab\cos(\gamma)bc\cos(\alpha)-ac\cos(\beta)b^2\right) \\ &=\ a^2b^2c^2-a^2b^2c^2\cos^2(\alpha) \\ &\quad-a^2b^2c^2\cos^2(\gamma)+a^2b^2c^2\cos(\alpha)\cos(\beta)\cos(\gamma) \\ &\quad+a^2b^2c^2\cos(\alpha)\cos(\beta)\cos(\gamma)-a^2b^2c^2\cos^2(\beta) \\ &=\ a^2b^2c^2\left(1-\cos^2(\alpha)-\cos^2(\gamma)+\cos(\alpha)\cos(\beta)\cos(\gamma)+\cos(\alpha)\cos(\beta)\cos(\gamma)-\cos^2(\beta)\right) \\ &=\ a^2b^2c^2\;\left(1+2\cos(\alpha)\cos(\beta)\cos(\gamma)-\cos^2(\alpha)-\cos^2(\beta)-\cos^2(\gamma)\right). \end{align}</math> (The last steps use <math>\mathbf a \cdot \mathbf a=a^2</math>, ..., <math>\mathbf a\cdot \mathbf b=ab\cos\gamma</math>, <math>\mathbf a \cdot \mathbf c = ac\cos\beta</math>, <math>\mathbf b\cdot \mathbf c=bc\cos\alpha</math>, ...)}} ;Corresponding tetrahedron The volume of any [[tetrahedron]] that shares three converging edges of a parallelepiped is equal to one sixth of the volume of that parallelepiped (see [[Tetrahedron#Volume|proof]]).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Parallelepiped
(section)
Add topic