Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Paleoproterozoic
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Life == {{see|Symbiogenesis}} At the beginning of the preceding [[Archean]] eon, almost all existing lifeforms were [[single-cell organism|single-cell]] [[prokaryotic]] [[anaerobic organism]]s whose [[metabolism]] was based on a form of [[cellular respiration]] that did not require oxygen, and [[autotroph]]s were either [[chemosynthetic]] or relied upon [[anoxygenic photosynthesis]]. After the Great Oxygenation Event, the then mainly [[archaea]]-dominated anaerobic [[microbial mat]]s were devastated as free oxygen is highly reactive and biologically toxic to cellular structures. This was compounded by a 300-[[million years|million-year]]-long [[icehouse Earth|global icehouse]] event known as the [[Huronian glaciation]] — at least partly due to the depletion of atmospheric methane, a powerful [[greenhouse gas]] — resulted in what is widely considered one of the first and most significant [[mass extinction]]s on Earth.<ref>{{cite journal |last1=Hodgskiss |first1=Malcolm S. W. |last2= Crockford |first2=Peter W. |last3=Peng |first3=Yongbo |last4=Wing |first4=Boswell A. |last5=Horner |first5= Tristan J. |date=27 August 2019 |title=A productivity collapse to end Earth's Great Oxidation |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |df=dmy-all |volume=116 |issue=35 |pages=17207–17212 |doi=10.1073/pnas.1900325116 |doi-access=free |pmid=31405980 |pmc=6717284 |bibcode=2019PNAS..11617207H}}</ref><ref>{{Cite book|url=https://books.google.com/books?id=eo_sMMRxgAUC&q=oxygen+holocaust&pg=PA99 |title=Microcosmos: Four Billion Years of Microbial Evolution |last1=Margulis |first1=Lynn |author-link=Lynn Margulis |last2=Sagan |first2=Dorion |author2-link=Dorion Sagan |date=1997-05-29 |publisher=University of California Press |isbn=9780520210646 |language=en }}</ref> The organisms that thrived after the extinction were mainly [[aerobe]]s that evolved [[antioxidant#Oxidative challenge in biology|bioactive antioxidant]]s and eventually [[aerobic respiration]], and surviving anaerobes were forced to live [[symbiotic]]ally alongside aerobes in hybrid colonies, which enabled the evolution of [[mitochondria]] in [[eukaryotic organism]]s. The Palaeoproterozoic represents the era from which the oldest cyanobacterial fossils, those of ''Eoentophysalis belcherensis'' from the Kasegalik Formation in the [[Belcher Islands]] of [[Nunavut]], are known.<ref>{{Cite journal |last1=Hodgskiss |first1=Malcolm S.W. |last2=Dagnaud |first2=Olivia M.J. |last3=Frost |first3=Jamie L. |last4=Halverson |first4=Galen P. |last5=Schmitz |first5=Mark D. |last6=Swanson-Hysell |first6=Nicholas L. |last7=Sperling |first7=Erik A. |date=15 August 2019 |title=New insights on the Orosirian carbon cycle, early Cyanobacteria, and the assembly of Laurentia from the Paleoproterozoic Belcher Group |url=https://linkinghub.elsevier.com/retrieve/pii/S0012821X19302936 |journal=[[Earth and Planetary Science Letters]] |language=en |volume=520 |pages=141–152 |doi=10.1016/j.epsl.2019.05.023 |access-date=18 May 2024 |via=Elsevier Science Direct}}</ref> By 1.75 Ga, thylakoid-bearing cyanobacteria had evolved, as evidenced by fossils from the McDermott Formation of Australia.<ref>{{Cite journal |last1=Demoulin |first1=Catherine F. |last2=Lara |first2=Yannick J. |last3=Lambion |first3=Alexandre |last4=Javaux |first4=Emmanuelle J. |date=18 January 2024 |title=Oldest thylakoids in fossil cells directly evidence oxygenic photosynthesis |url=https://www.nature.com/articles/s41586-023-06896-7 |journal=[[Nature (journal)|Nature]] |language=en |volume=625 |issue=7995 |pages=529–534 |doi=10.1038/s41586-023-06896-7 |issn=0028-0836 |access-date=24 June 2024}}</ref> Many crown node eukaryotes (from which the modern-day eukaryotic lineages would have arisen) have been approximately dated to around the time of the Paleoproterozoic Era.<ref>{{cite journal |last1=Mänd |first1=Kaarel |last2=Planavsky |first2=Noah J. |last3=Porter |first3=Susannah M. |last4=Robbins |first4=Leslie J. |last5=Wang |first5=Changle |last6=Kraitsmann |first6=Timmu |last7=Paiste |first7=Kärt |last8=Paiste |first8=Päärn |last9=Romashkin |first9=Alexander E. |last10=Deines |first10=Yulia E. |last11=Kirsimäe |first11=Kalle |last12=Lepland |first12=Aivo |last13=Konhauser |first13=Kurt O. |date=15 April 2022 |title=Chromium evidence for protracted oxygenation during the Paleoproterozoic |url=https://www.sciencedirect.com/science/article/abs/pii/S0012821X22001376 |journal=[[Earth and Planetary Science Letters]] |volume=584 |page=117501 |doi=10.1016/j.epsl.2022.117501 |access-date=15 December 2022|hdl=10037/24808 |hdl-access=free }}</ref><ref name=":0">{{Cite journal|last1=Hedges|first1=S Blair|last2=Chen|first2=Hsiong|last3=Kumar|first3=Sudhir|last4=Wang|first4=Daniel YC|last5=Thompson|first5=Amanda S|last6=Watanabe|first6=Hidemi|date=2001-09-12|title=A genomic timescale for the origin of eukaryotes|journal=BMC Evolutionary Biology|volume=1|pages=4|doi=10.1186/1471-2148-1-4|issn=1471-2148|pmid=11580860|pmc=56995 |doi-access=free }}</ref><ref name=":2">{{Cite journal|last1=Hedges|first1=S Blair|last2=Blair|first2=Jaime E|last3=Venturi|first3=Maria L|last4=Shoe|first4=Jason L|date=2004-01-28|title=A molecular timescale of eukaryote evolution and the rise of complex multicellular life|journal=BMC Evolutionary Biology|volume=4|pages=2|doi=10.1186/1471-2148-4-2|issn=1471-2148|pmid=15005799|pmc=341452 |doi-access=free }}</ref> While there is some debate as to the exact time at which eukaryotes evolved,<ref>{{Cite journal|last1=Rodríguez-Trelles|first1=Francisco|last2=Tarrío|first2=Rosa|last3=Ayala|first3=Francisco J.|date=2002-06-11|title=A methodological bias toward overestimation of molecular evolutionary time scales|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=99|issue=12|pages=8112–8115|doi=10.1073/pnas.122231299|issn=0027-8424|pmid=12060757|pmc=123029|bibcode=2002PNAS...99.8112R|doi-access=free}}</ref><ref>{{Cite journal|last1=Stechmann|first1=Alexandra|last2=Cavalier-Smith|first2=Thomas|date=2002-07-05|title=Rooting the eukaryote tree by using a derived gene fusion|journal=Science|volume=297|issue=5578|pages=89–91|doi=10.1126/science.1071196|issn=1095-9203|pmid=12098695|bibcode=2002Sci...297...89S|s2cid=21064445}}</ref> current understanding places it somewhere in this era.<ref>{{Cite journal|last1=Ayala|first1=Francisco José|last2=Rzhetsky|first2=Andrey|last3=Ayala|first3=Francisco J.|date=1998-01-20|title=Origin of the metazoan phyla: Molecular clocks confirm paleontological estimates|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=95|issue=2|pages=606–611|issn=0027-8424|pmid=9435239|pmc=18467|doi=10.1073/pnas.95.2.606|bibcode=1998PNAS...95..606J|doi-access=free}}</ref><ref>{{Cite journal|last1=Wang|first1=D Y|last2=Kumar|first2=S|last3=Hedges|first3=S B|date=1999-01-22|title=Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi.|journal=Proceedings of the Royal Society B: Biological Sciences|volume=266|issue=1415|pages=163–171|pmc=1689654|pmid=10097391|doi=10.1098/rspb.1999.0617}}</ref><ref>{{cite journal |last1=Javaux |first1=Emmanuelle J. |last2=Lepot |first2=Kevin |date=January 2018 |title=The Paleoproterozoic fossil record: Implications for the evolution of the biosphere during Earth's middle-age |journal=[[Earth-Science Reviews]] |volume=176 |pages=68–86 |doi=10.1016/j.earscirev.2017.10.001 |doi-access=free |hdl=20.500.12210/62416 |hdl-access=free }}</ref> Statherian [[fossils]] from the [[Changcheng System|Changcheng Group]] in [[North China]] provide evidence that eukaryotic life was already diverse by the late Palaeoproterozoic.<ref>{{cite journal |last1=Miao |first1=Lanyun |last2=Moczydłowska |first2=Małgorzata |last3=Zhu |first3=Shixing |last4=Zhu |first4=Maoyan |date=February 2019 |title=New record of organic-walled, morphologically distinct microfossils from the late Paleoproterozoic Changcheng Group in the Yanshan Range, North China |url=https://www.sciencedirect.com/science/article/abs/pii/S0301926818301827 |journal=[[Precambrian Research]] |volume=321 |pages=172–198 |doi=10.1016/j.precamres.2018.11.019 |s2cid=134362289 |access-date=29 December 2022}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Paleoproterozoic
(section)
Add topic