Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
P-group
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Non-trivial center=== One of the first standard results using the [[class equation]] is that the [[Center (group theory)|center]] of a non-trivial finite ''p''-group cannot be the trivial subgroup.<ref>[[Conjugacy class#Example|proof]]</ref> This forms the basis for many inductive methods in ''p''-groups. For instance, the [[normalizer]] ''N'' of a [[proper subgroup]] ''H'' of a finite ''p''-group ''G'' properly contains ''H'', because for any [[counterexample]] with ''H'' = ''N'', the center ''Z'' is contained in ''N'', and so also in ''H'', but then there is a smaller example ''H''/''Z'' whose normalizer in ''G''/''Z'' is ''N''/''Z'' = ''H''/''Z'', creating an infinite descent. As a corollary, every finite ''p''-group is [[nilpotent group|nilpotent]]. In another direction, every [[normal subgroup]] ''N'' of a finite ''p''-group intersects the center non-trivially as may be proved by considering the elements of ''N'' which are fixed when ''G'' acts on ''N'' by conjugation. Since every central subgroup is normal, it follows that every minimal normal subgroup of a finite ''p''-group is central and has order ''p''. Indeed, the [[socle of a group|socle]] of a finite ''p''-group is the subgroup of the center consisting of the central elements of order ''p''. If ''G'' is a ''p''-group, then so is ''G''/''Z'', and so it too has a non-trivial center. The preimage in ''G'' of the center of ''G''/''Z'' is called the [[Center (group theory)#Higher centers|second center]] and these groups begin the [[upper central series]]. Generalizing the earlier comments about the socle, a finite ''p''-group with order ''p<sup>n</sup>'' contains normal subgroups of order ''p<sup>i</sup>'' with 0 β€ ''i'' β€ ''n'', and any normal subgroup of order ''p<sup>i</sup>'' is contained in the ''i''th center ''Z''<sub>''i''</sub>. If a normal subgroup is not contained in ''Z''<sub>''i''</sub>, then its intersection with ''Z''<sub>''i''+1</sub> has size at least ''p''<sup>''i''+1</sup>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
P-group
(section)
Add topic