Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Noether's theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Informal statement of the theorem == All fine technical points aside, Noether's theorem can be stated informally as: {{blockquote|If a system has a continuous symmetry property, then there are corresponding quantities whose values are conserved in time.<ref>{{cite book |author=Thompson, W.J. |title=Angular Momentum: an illustrated guide to rotational symmetries for physical systems |publisher=Wiley |year=1994 |isbn=0-471-55264-X |volume=1 |page=5 |url=https://books.google.com/books?id=O25fXV4z0B0C&pg=PA5}}</ref>}} A more sophisticated version of the theorem involving fields states that: {{blockquote|To every continuous [[Symmetry in physics|symmetry]] generated by local actions there corresponds a [[conserved current]] and vice versa.}} The word "symmetry" in the above statement refers more precisely to the [[general covariance|covariance]] of the form that a physical law takes with respect to a one-dimensional [[Lie group]] of transformations satisfying certain technical criteria. The [[conservation law]] of a [[physical quantity]] is usually expressed as a [[continuity equation]]. The formal proof of the theorem utilizes the condition of invariance to derive an expression for a current associated with a conserved physical quantity. In modern terminology, the conserved quantity is called the ''Noether charge'', while the flow carrying that charge is called the ''Noether current''. The Noether current is defined [[up to]] a [[solenoidal]] (divergenceless) vector field. In the context of gravitation, [[Felix Klein]]'s statement of Noether's theorem for action ''I'' stipulates for the invariants:<ref>Nina Byers (1998) [http://cwp.library.ucla.edu/articles/noether.asg/noether.html "E. Noether's Discovery of the Deep Connection Between Symmetries and Conservation Laws"]. In Proceedings of a Symposium on the Heritage of Emmy Noether, held on 2β4 December 1996, at the Bar-Ilan University, Israel, Appendix B.</ref> {{blockquote|If an integral I is invariant under a continuous group ''G''<sub>''Ο''</sub> with ''Ο'' parameters, then ''Ο'' linearly independent combinations of the Lagrangian expressions are divergences.}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Noether's theorem
(section)
Add topic