Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Matrix addition
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==<span id="directsum"></span>Direct sum== Another operation, which is used less often, is the direct sum (denoted by β). The Kronecker sum is also denoted β; the context should make the usage clear. The direct sum of any pair of matrices '''A''' of size ''m'' × ''n'' and '''B''' of size ''p'' × ''q'' is a matrix of size (''m'' + ''p'') × (''n'' + ''q'') defined as:<ref>{{MathWorld |id=MatrixDirectSum |title=Matrix Direct Sum}}</ref>{{sfn|Lipschutz|Lipson|2017}} :'''<math> \mathbf{A} \oplus \mathbf{B} = \begin{bmatrix} \mathbf{A} & \boldsymbol{0} \\ \boldsymbol{0} & \mathbf{B} \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & \cdots & a_{mn} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & b_{11} & \cdots & b_{1q} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & b_{p1} & \cdots & b_{pq} \end{bmatrix} </math>''' For instance, :<math> \begin{bmatrix} 1 & 3 & 2 \\ 2 & 3 & 1 \end{bmatrix} \oplus \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 2 & 0 & 0 \\ 2 & 3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} </math> The direct sum of matrices is a special type of [[block matrix]]. In particular, the direct sum of square matrices is a [[Block matrix#Block diagonal matrices|block diagonal matrix]]. The [[adjacency matrix]] of the union of disjoint [[Graph (discrete mathematics)|graphs]] (or [[multigraph]]s) is the direct sum of their adjacency matrices. Any element in the [[Direct sum of modules|direct sum]] of two [[vector space]]s of matrices can be represented as a direct sum of two matrices. In general, the direct sum of ''n'' matrices is:{{sfn|Lipschutz|Lipson|2017}} :<math> \bigoplus_{i=1}^{n} \mathbf{A}_{i} = \operatorname{diag}( \mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n) = \begin{bmatrix} \mathbf{A}_1 & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \boldsymbol{0} & \mathbf{A}_2 & \cdots & \boldsymbol{0} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \cdots & \mathbf{A}_n \\ \end{bmatrix}\,\!</math> where the zeros are actually blocks of zeros (i.e., zero matrices).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Matrix addition
(section)
Add topic