Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Many-valued logic
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == {{main|Three-valued logic|Four-valued logic|Nine-valued logic}} === Kleene (strong) {{math|''K''<sub>3</sub>}} and Priest logic {{math|''P''<sub>3</sub>}} === [[Stephen Cole Kleene|Kleene]]'s "(strong) logic of indeterminacy" {{math|''K''<sub>3</sub>}} (sometimes <math>K_3^S</math>) and [[Graham Priest|Priest]]'s "logic of paradox" add a third "undefined" or "indeterminate" truth value {{math|I}}. The truth functions for [[negation]] (¬), <!--(strong)--> [[logical conjunction|conjunction]] (∧), <!--(strong)--> [[disjunction]] (∨), <!--(strong)--> [[material conditional|implication]] ({{underset|''K''|→}}), and <!--(strong)--> [[biconditional]] ({{underset|''K''|↔}}) are given by:<ref>{{harv|Gottwald|2005|p=19}}</ref> {| cellpadding="0" |- valign="bottom" | {| class="wikitable" style="text-align:center;" |- ! width="25" | ¬ ! width="25" | |- ! {{math|T}} | {{math|F}} |- ! {{math|I}} | {{math|I}} |- ! {{math|F}} | {{math|T}} |} || || || {| class="wikitable" style="text-align: center;" |- ! width="25" | ∧ ! width="25" | {{math|T}} ! width="25" | {{math|I}} ! width="25" | {{math|F}} |- ! {{math|T}} | {{math|T}} || {{math|I}} || {{math|F}} |- ! {{math|I}} | {{math|I}} || {{math|I}} || {{math|F}} |- ! {{math|F}} | {{math|F}} || {{math|F}} || {{math|F}} |} || || || {| class="wikitable" style="text-align: center;" |- ! width="25" | ∨ ! width="25" | {{math|T}} ! width="25" | {{math|I}} ! width="25" | {{math|F}} |- ! {{math|T}} | {{math|T}} || {{math|T}} || {{math|T}} |- ! {{math|I}} | {{math|T}} || {{math|I}} || {{math|I}} |- ! {{math|F}} | {{math|T}} || {{math|I}} || {{math|F}} |} || || || {| class="wikitable" style="text-align: center;" |- ! width="25" | {{underset|''K''|→}} ! width="25" | {{math|T}} ! width="25" | {{math|I}} ! width="25" | {{math|F}} |- ! {{math|T}} | {{math|T}} || {{math|I}} || {{math|F}} |- ! {{math|I}} | {{math|T}} || {{math|I}} || {{math|I}} |- ! {{math|F}} | {{math|T}} || {{math|T}} || {{math|T}} |} || || || {| class="wikitable" style="text-align: center;" |- ! width="25" | {{underset|''K''|↔}} ! width="25" | {{math|T}} ! width="25" | {{math|I}} ! width="25" | {{math|F}} |- ! {{math|T}} | {{math|T}} || {{math|I}} || {{math|F}} |- ! {{math|I}} | {{math|I}} || {{math|I}} || {{math|I}} |- ! {{math|F}} | {{math|F}} || {{math|I}} || {{math|T}} |} |} The difference between the two logics lies in how [[tautology (logic)|tautologies]] are defined. In {{math|''K''<sub>3</sub>}} only {{math|T}} is a ''designated truth value'', while in {{math|''P''<sub>3</sub>}} both {{math|T}} and {{math|I}} are (a logical formula is considered a tautology if it evaluates to a designated truth value). In Kleene's logic {{math|I}} can be interpreted as being "underdetermined", being neither true nor false, while in Priest's logic {{math|I}} can be interpreted as being "overdetermined", being both true and false. {{math|''K''<sub>3</sub>}} does not have any tautologies, while {{math|''P''<sub>3</sub>}} has the same tautologies as classical two-valued logic.<ref>{{cite book |last= Humberstone |first= Lloyd |date= 2011 |title= The Connectives |url= https://archive.org/details/connectives00humb |url-access= limited |location= Cambridge, Massachusetts |publisher= The MIT Press |pages= [https://archive.org/details/connectives00humb/page/n219 201] |isbn= 978-0-262-01654-4 }}</ref> === Bochvar's internal three-valued logic === Another logic is Dmitry Bochvar's "internal" three-valued logic <math>B_3^I</math>, also called Kleene's weak three-valued logic. Except for negation and biconditional, its truth tables are all different from the above.<ref name="Bergmann 2008 80">{{harv|Bergmann|2008|p=80}}</ref> {| | {| class="wikitable" style="text-align: center;" |- ! width="25" | {{underset|+|∧}} ! width="25" | {{math|T}} ! width="25" | {{math|I}} ! width="25" | {{math|F}} |- ! {{math|T}} | {{math|T}} || {{math|I}} || {{math|F}} |- ! {{math|I}} | {{math|I}} || {{math|I}} || {{math|I}} |- ! {{math|F}} | {{math|F}} || {{math|I}} || {{math|F}} |} || || || {| class="wikitable" style="text-align: center;" ! width="25" | {{underset|+|∨}} ! width="25" | {{math|T}} ! width="25" | {{math|I}} ! width="25" | {{math|F}} |- ! {{math|T}} | {{math|T}} || {{math|I}} || {{math|T}} |- ! {{math|I}} | {{math|I}} || {{math|I}} || {{math|I}} |- ! {{math|F}} | {{math|T}} || {{math|I}} || {{math|F}} |} || || || {| class="wikitable" style="text-align: center;" |- ! width="25" | {{underset|+|→}} ! width="25" | {{math|T}} ! width="25" | {{math|I}} ! width="25" | {{math|F}} |- ! {{math|T}} | {{math|T}} || {{math|I}} || {{math|F}} |- ! {{math|I}} | {{math|I}} || {{math|I}} || {{math|I}} |- ! {{math|F}} | {{math|T}} || {{math|I}} || {{math|T}} |} |} The intermediate truth value in Bochvar's "internal" logic can be described as "contagious" because it propagates in a formula regardless of the value of any other variable.<ref name="Bergmann 2008 80"/> === Belnap logic ({{math|''B''<sub>4</sub>}}) === [[Nuel Belnap|Belnap]]'s logic {{math|''B''<sub>4</sub>}} combines {{math|''K''<sub>3</sub>}} and {{math|''P''<sub>3</sub>}}. The overdetermined truth value is here denoted as ''B'' and the underdetermined truth value as ''N''. {| | {| class="wikitable" style="text-align:center;" |- ! width="25" | {{math|''f''<sub>¬</sub>}} ! width="25" | |- ! {{math|T}} | {{math|F}} |- ! {{math|B}} | {{math|B}} |- ! {{math|N}} | {{math|N}} |- ! {{math|F}} | {{math|T}} |} || || || {| class="wikitable" style="text-align:center;" |- ! width="25" | {{math|''f''<sub>∧</sub>}} ! width="25" | {{math|T}} ! width="25" | {{math|B}} ! width="25" | {{math|N}} ! width="25" | {{math|F}} |- ! {{math|T}} | {{math|T}} || {{math|B}} || {{math|N}} || {{math|F}} |- ! {{math|B}} | {{math|B}} || {{math|B}} || {{math|F}} || {{math|F}} |- ! {{math|N}} | {{math|N}} || {{math|F}} || {{math|N}} || {{math|F}} |- ! {{math|F}} | {{math|F}} || {{math|F}} || {{math|F}} || {{math|F}} |} || || || {| class="wikitable" style="text-align:center;" |- ! width="25" | {{math|''f''<sub>∨</sub>}} ! width="25" | {{math|T}} ! width="25" | {{math|B}} ! width="25" | {{math|N}} ! width="25" | {{math|F}} |- ! {{math|T}} | {{math|T}} || {{math|T}} || {{math|T}} || {{math|T}} |- ! {{math|B}} | {{math|T}} || {{math|B}} || {{math|T}} || {{math|B}} |- ! {{math|N}} | {{math|T}} || {{math|T}} || {{math|N}} || {{math|N}} |- ! {{math|F}} | {{math|T}} || {{math|B}} || {{math|N}} || {{math|F}} |} |} === Gödel logics ''G<sub>k</sub>'' and ''G''<sub>∞</sub> === In 1932 [[Kurt Gödel|Gödel]] defined<ref>{{cite journal | last = Gödel | first = Kurt | title = Zum intuitionistischen Aussagenkalkül | journal = Anzeiger der Akademie der Wissenschaften in Wien | date = 1932 | issue = 69 | pages = 65f }}</ref> a family <math>G_k</math> of many-valued logics, with finitely many truth values <math>0, \tfrac{1}{k - 1}, \tfrac{2}{k - 1}, \ldots, \tfrac{k - 2}{k - 1}, 1</math>, for example <math>G_3</math> has the truth values <math>0, \tfrac{1}{2}, 1</math> and <math>G_4</math> has <math>0, \tfrac{1}{3}, \tfrac{2}{3}, 1</math>. In a similar manner he defined a logic with infinitely many truth values, <math>G_\infty</math>, in which the truth values are all the [[real number]]s in the interval <math>[0, 1]</math>. The designated truth value in these logics is 1. The conjunction <math>\wedge</math> and the disjunction <math>\vee</math> are defined respectively as the [[minimum]] and [[maximum]] of the operands: : <math>\begin{align} u \wedge v &:= \min\{u, v\} \\ u \vee v &:= \max\{u, v\} \end{align}</math> Negation <math>\neg_G</math> and implication <math>\xrightarrow[G]{}</math> are defined as follows: : <math>\begin{align} \neg_G u &= \begin{cases} 1, & \text{if }u = 0 \\ 0, & \text{if }u > 0 \end{cases} \\[3pt] u \mathrel{\xrightarrow[G]{}} v &= \begin{cases} 1, & \text{if }u \leq v \\ v, & \text{if }u > v \end{cases} \end{align}</math> Gödel logics are completely axiomatisable, that is to say it is possible to define a logical calculus in which all tautologies are provable. The implication above is the unique [[Heyting implication]] defined by the fact that the suprema and minima operations form a complete lattice with an infinite distributive law, which defines a unique [[complete Heyting algebra]] structure on the lattice. === Łukasiewicz logics {{mvar|L<sub>v</sub>}} and {{math|''L''<sub>∞</sub>}}=== Implication <math>\xrightarrow[L]{}</math> and negation <math>\underset{L}{\neg}</math> were defined by [[Jan Łukasiewicz]] through the following functions: : <math>\begin{align} \underset{L}{\neg} u &:= 1 - u \\ u \mathrel{\xrightarrow[L]{}} v &:= \min\{1, 1 - u + v\} \end{align}</math> At first Łukasiewicz used these definitions in 1920 for his three-valued logic <math>L_3</math>, with truth values <math>0, \frac{1}{2}, 1</math>. In 1922 he developed a logic with infinitely many values <math>L_\infty</math>, in which the truth values spanned the real numbers in the interval <math>[0, 1]</math>. In both cases the designated truth value was 1.<ref>{{cite book |last1= Kreiser |first1= Lothar |last2 = Gottwald |first2 = Siegfried |last3 = Stelzner |first3 = Werner |date= 1990 |title= Nichtklassische Logik. Eine Einführung |location= Berlin |publisher= Akademie-Verlag |pages= 41ff – 45ff |isbn= 978-3-05-000274-3 }}</ref> By adopting truth values defined in the same way as for Gödel logics <math>0, \tfrac{1}{v-1}, \tfrac{2}{v-1}, \ldots, \tfrac {v-2} {v-1}, 1</math>, it is possible to create a finitely-valued family of logics <math>L_v</math>, the abovementioned <math>L_\infty</math> and the logic <math>L_{\aleph_0}</math>, in which the truth values are given by the [[rational number]]s in the interval <math>[0,1]</math>. The set of tautologies in <math>L_\infty</math> and <math>L_{\aleph_0}</math> is identical. === Product logic {{math|Π}} === In product logic we have truth values in the interval <math>[0,1]</math>, a conjunction <math>\odot</math> and an implication <math>\xrightarrow [\Pi]{}</math>, defined as follows<ref>Hajek, Petr: ''Fuzzy Logic''. In: Edward N. Zalta: ''The Stanford Encyclopedia of Philosophy'', Spring 2009. ([http://plato.stanford.edu/archives/spr2009/entries/logic-fuzzy/])</ref> : <math>\begin{align} u \odot v &:= uv \\ u \mathrel{\xrightarrow[\Pi]{}} v &:= \begin{cases} 1, & \text{if } u \leq v \\ \frac{v}{u}, & \text{if } u > v \end{cases} \end{align}</math> Additionally there is a negative designated value <math>\overline{0}</math> that denotes the concept of ''false''. Through this value it is possible to define a negation <math>\underset{\Pi}{\neg}</math> and an additional conjunction <math>\underset{\Pi}{\wedge}</math> as follows: : <math>\begin{align} \underset{\Pi}{\neg} u &:= u \mathrel{\xrightarrow[\Pi]{}} \overline{0} \\ u \mathbin{\underset{\Pi}{\wedge}} v &:= u \odot \left(u \mathrel{\xrightarrow[\Pi]{}} v\right) \end{align}</math> and then <math>u \mathbin{\underset{\Pi}{\wedge}} v = \min\{u, v\}</math>. === Post logics ''P<sub>m</sub>'' === In 1921 [[Emil Leon Post|Post]] defined a family of logics <math>P_m</math> with (as in <math>L_v</math> and <math>G_k</math>) the truth values <math>0, \tfrac 1 {m-1}, \tfrac 2 {m-1}, \ldots, \tfrac {m-2} {m-1}, 1</math>. Negation <math>\underset{P}{\neg}</math> and conjunction <math>\underset{P}{\wedge}</math> and disjunction <math>\underset{P}{\vee}</math> are defined as follows: : <math>\begin{align} \underset{P}{\neg} u &:= \begin{cases} 1, & \text{if } u = 0 \\ u - \frac{1}{m - 1}, & \text{if } u \not= 0 \end{cases} \\[6pt] u \mathbin{\underset{P}{\wedge}} v &:= \min\{u,v\} \\[6pt] u \mathbin{\underset{P}{\vee}} v &:= \max\{u,v\} \end{align}</math> === Rose logics === In 1951, Alan Rose defined another family of logics for systems whose truth-values form [[lattice (order theory)|lattice]]s.<ref>{{cite journal|title=Systems of logic whose truth-values form lattices|journal=Mathematische Annalen|volume=123|date=December 1951|pages=152–165|doi=10.1007/BF02054946|last1=Rose|first1=Alan|s2cid=119735870}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Many-valued logic
(section)
Add topic