Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Legendre polynomials
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Definition by construction as an orthogonal system === In this approach, the polynomials are defined as an orthogonal system with respect to the weight function <math>w(x) = 1</math> over the interval <math> [-1,1]</math>. That is, <math>P_n(x)</math> is a polynomial of degree <math>n</math>, such that <math display="block">\int_{-1}^1 P_m(x) P_n(x) \,dx = 0 \quad \text{if } n \ne m.</math> With the additional standardization condition <math>P_n(1) = 1</math>, all the polynomials can be uniquely determined. We then start the construction process: <math>P_0(x) = 1</math> is the only correctly standardized polynomial of degree 0. <math>P_1(x)</math> must be orthogonal to <math>P_0</math>, leading to <math>P_1(x) = x</math>, and <math>P_2(x)</math> is determined by demanding orthogonality to <math>P_0</math> and <math>P_1</math>, and so on. <math>P_n</math> is fixed by demanding orthogonality to all <math>P_m</math> with <math> m < n </math>. This gives <math> n </math> conditions, which, along with the standardization <math> P_n(1) = 1</math> fixes all <math> n+1</math> coefficients in <math> P_n(x)</math>. With work, all the coefficients of every polynomial can be systematically determined, leading to the explicit representation in powers of <math>x</math> given below. This definition of the <math>P_n</math>'s is the simplest one. It does not appeal to the theory of differential equations. Second, the completeness of the polynomials follows immediately from the completeness of the powers 1, <math> x, x^2, x^3, \ldots</math>. Finally, by defining them via orthogonality with respect to the [[Lebesgue measure]] on <math> [-1, 1] </math>, it sets up the Legendre polynomials as one of the three [[classical orthogonal polynomials|classical orthogonal polynomial systems]]. The other two are the [[Laguerre polynomials]], which are orthogonal over the half line <math>[0,\infty)</math> with the weight <math> e^{-x} </math>, and the [[Hermite polynomials]], orthogonal over the full line <math>(-\infty,\infty)</math> with weight <math> e^{-x^2} </math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Legendre polynomials
(section)
Add topic