Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Jones calculus
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Jones matrices == Jones calculus is a matrix calculus developed in 1941 by [[Henry Hurwitz Jr.]] and [[R. Clark Jones]] and published in the ''[[Journal of the Optical Society of America]]''.<ref>{{Cite journal |last1= Hurwitz |first1= Henry |last2= Jones |first2= R. Clark |authorlink1=Henry Hurwitz Jr.| date= 1941 |title= A new calculus for the treatment of optical systems, II. Proof of three general equivalence theorems |journal= Journal of the Optical Society of America |volume= 31 |issue= 7 |pages= 493–499 |doi= 10.1364/JOSA.31.000493 |bibcode= 1941JOSA...31..493H }}</ref><ref>{{Cite journal |last= Jones |first= R. Clark |date= 1941 |title= A new calculus for the treatment of optical systems, I. Description and Discussion of the Calculus |journal= Journal of the Optical Society of America |volume= 31 |issue= 7 |pages= 488–493 |doi= 10.1364/JOSA.31.000488 |bibcode= 1941JOSA...31..488J }}</ref><ref>{{Cite journal |last= Jones |first= R. Clark |date= 1941 |title= A new calculus for the treatment of optical systems, III. The Sohncke Theory of optical activity |journal= Journal of the Optical Society of America |volume= 31 |issue= 7 |pages= 500–503 |doi= 10.1364/JOSA.31.000500 |bibcode= 1941JOSA...31..500J }}</ref><ref>{{Cite journal |last= Jones |first= R. Clark |date= 1942 |title= A new calculus for the treatment of optical systems, IV. |journal= Journal of the Optical Society of America |volume= 32 |issue= 8 |pages= 486–493 |doi= 10.1364/JOSA.32.000486 |bibcode= 1942JOSA...32..486C }}</ref> The Jones matrices are operators that act on the Jones vectors defined above. These matrices are implemented by various optical elements such as lenses, beam splitters, mirrors, etc. Each matrix represents projection onto a one-dimensional complex subspace of the Jones vectors. The following table gives examples of Jones matrices for polarizers: {| class="wikitable" style="text-align:center" ! Optical element !! Jones matrix |- | Linear [[polarizer]] with axis of transmission horizontal<ref name="fowles">{{cite book|author=Fowles, G.|title=Introduction to Modern Optics|url=https://archive.org/details/introductiontomo00fowl_441|url-access=limited|edition=2nd|publisher=Dover|date=1989|page=[https://archive.org/details/introductiontomo00fowl_441/page/n44 35]|isbn=9780486659572 }}</ref> || <math>\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}</math> |- | Linear polarizer with axis of transmission vertical<ref name="fowles" /> || <math>\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}</math> |- | Linear polarizer with axis of transmission at Β±45Β° with the horizontal<ref name="fowles" /> || <math>\frac{1}{2} \begin{pmatrix} 1 & \pm 1 \\ \pm 1 & 1 \end{pmatrix}</math> |- | Linear polarizer with axis of transmission angle <math>\theta</math> from the horizontal<ref name="fowles" /> || <math> \begin{pmatrix} \cos^2(\theta) & \cos(\theta)\sin(\theta) \\ \cos(\theta)\sin(\theta) & \sin^2(\theta) \end{pmatrix}</math> |- | Right circular polarizer<ref name="fowles" /> || <math>\frac{1}{2} \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}</math> |- | Left circular polarizer<ref name="fowles" /> || <math>\frac{1}{2} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix} </math> |- |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Jones calculus
(section)
Add topic