Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Idempotence
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == * In the [[monoid]] <math>(\mathbb{N}, \times)</math> of the [[natural number]]s with [[multiplication]], only <math>0</math> and <math>1</math> are idempotent. Indeed, {{nowrap|1=<math>0\times 0 = 0</math>}} and {{nowrap|1=<math>1\times 1=1</math>}}. * In the [[monoid]] <math>(\mathbb{N}, +)</math> of the [[natural number]]s with [[addition]], only <math>0</math> is idempotent. Indeed, {{nowrap|1=0 + 0 = 0}}. * In a [[Magma (algebra)|magma]] <math>(M, \cdot)</math>, an [[identity element]] <math>e</math> or an [[absorbing element]] <math>a</math>, if it exists, is idempotent. Indeed, {{nowrap|1=<math>e\cdot e=e</math>}} and {{nowrap|1=<math>a\cdot a=a</math>}}. * In a [[Group (mathematics)|group]] <math>(G, \cdot)</math>, the identity element <math>e</math> is the only idempotent element. Indeed, if <math>x</math> is an element of <math>G</math> such that {{nowrap|1=<math>x\cdot x=x</math>}}, then {{nowrap|1=<math>x\cdot x=x\cdot e</math>}} and finally <math>x=e</math> by multiplying on the left by the [[inverse element]] of <math>x</math>. * In the monoids <math>(\mathcal{P}(E), \cup)</math> and <math>(\mathcal{P}(E), \cap)</math> of the [[power set]] <math>\mathcal{P}(E)</math> of the set <math>E</math> with [[Union (set theory)|set union]] <math>\cup</math> and [[Intersection (set theory)|set intersection]] <math>\cap</math> respectively, <math>\cup</math> and <math>\cap</math> are idempotent. Indeed, {{nowrap|1=<math>x\cup x=x</math> for all <math>x\in \mathcal{P}(E)</math>}}, and {{nowrap|1=<math>x\cap x=x</math> for all <math>x\in \mathcal{P}(E)</math>}}. * In the monoids <math>(\{0, 1\}, \vee)</math> and <math>(\{0, 1\}, \wedge)</math> of the [[Boolean domain]] with [[logical disjunction]] <math>\vee</math> and [[logical conjunction]] <math>\wedge</math> respectively, <math>\vee</math> and <math>\wedge</math> are idempotent. Indeed, {{nowrap|1=<math>x\vee x=x</math> for all <math>x\in \{0, 1\}</math>}}, and {{nowrap|1=<math>x\wedge x=x</math> for all <math>x\in \{0, 1\}</math>}}. * In a [[GCD domain]] (for instance in <math>\mathbb{Z}</math>), the operations of [[greatest common divisor|GCD]] and [[least common multiple|LCM]] are idempotent. * In a [[Boolean ring]], multiplication is idempotent. * In a [[Tropical semiring]], addition is idempotent. * In a [[Matrix_ring|ring of quadratic matrices]], the [[determinant]] of an [[idempotent matrix]] is either 0 or 1. If the determinant is 1, the matrix necessarily is the [[identity matrix]].{{cn|date=November 2022}} ===Idempotent functions=== In the monoid <math>(E^E, \circ)</math> of the functions from a set <math>E</math> to itself (see [[Function_(mathematics)#Set_exponentiation|set exponentiation]]) with [[function composition]] <math>\circ</math>, idempotent elements are the functions {{nowrap|<math>f\colon E\to E</math>}} such that {{nowrap|1=<math>f\circ f = f</math>}},{{efn |This is an equation between functions. Two functions are equal if their domains and ranges agree, and their output values agree on their whole domain.}} that is such that {{nowrap|1=<math>f(f(x))=f(x)</math> for all <math>x\in E</math>}} (in other words, the image <math>f(x)</math> of each element <math>x\in E</math> is a [[Fixed point (mathematics)|fixed point]] of <math>f</math>). For example: * the [[absolute value]] is idempotent. Indeed, {{nowrap|1=<math>\operatorname{abs}\circ \operatorname{abs}=\operatorname{abs}</math>}}, that is {{nowrap|1=<math>\operatorname{abs}(\operatorname{abs}(x))=\operatorname{abs}(x)</math> for all <math>x</math>}}; * [[Constant function|constant]] functions are idempotent; * the [[identity function]] is idempotent; * the [[Floor and ceiling functions|floor]], [[Floor and ceiling functions|ceiling]] and [[fractional part]] functions are idempotent; * the real part function <math>\mathrm{Re}(z)</math> of a [[complex number]], is idempotent. * the [[Generating set of a group|subgroup generated]] function from the power set of a group to itself is idempotent; * the [[convex hull]] function from the power set of an [[affine space]] over the [[Real number|reals]] to itself is idempotent; * the [[Closure (topology)|closure]] and [[Interior (topology)|interior]] functions of the power set of a [[topological space]] to itself are idempotent; * the [[Kleene star]] and [[Kleene plus]] functions of the power set of a monoid to itself are idempotent; * the idempotent [[endomorphism]]s of a [[vector space]] are its [[Projection (linear algebra)|projections]]. If the set <math>E</math> has <math>n</math> elements, we can partition it into <math>k</math> chosen fixed points and {{nowrap|<math>n-k</math>}} non-fixed points under <math>f</math>, and then <math>k^{n-k}</math> is the number of different idempotent functions. Hence, taking into account all possible partitions, : <math>\sum_{k=0}^n {n \choose k} k^{n-k}</math> is the total number of possible idempotent functions on the set. The [[integer sequence]] of the number of idempotent functions as given by the sum above for ''n'' = 0, 1, 2, 3, 4, 5, 6, 7, 8, ... starts with 1, 1, 3, 10, 41, 196, 1057, 6322, 41393, ... {{OEIS|A000248}}. Neither the property of being idempotent nor that of being not is preserved under function composition.{{efn |If <math>f</math> and <math>g</math> commute under composition (i.e. if {{nowrap|1=<math>f\circ g=g\circ f</math>}}) then idempotency of both <math>f</math> and <math>g</math> implies that of {{nowrap|<math>f\circ g</math>}}, since {{nowrap|1=<math>(f\circ g)\circ (f\circ g)=f\circ (g\circ f)\circ g=f\circ (f\circ g)\circ g=(f\circ f)\circ (g\circ g)=f\circ g</math>}}, using the associativity of composition.}} As an example for the former, {{nowrap|1=<math>f(x)=x</math>}} [[modular arithmetic|mod]] 3 and <math>g(x)=\max(x, 5)</math> are both idempotent, but {{nowrap|<math>f\circ g</math>}} is not,{{efn |e.g. <math>f(g(7))=f(7)=1</math>, but <math>f(g(1))=f(5)=2\neq 1</math>}} although {{nowrap|<math>g\circ f</math>}} happens to be.{{efn |Also showing that commutation of <math>f</math> and <math>g</math> is not a [[necessary condition]] for idempotency preservation.}} As an example for the latter, the negation function <math>\neg</math> on the Boolean domain is not idempotent, but {{nowrap|<math>\neg\circ\neg</math>}} is. Similarly, unary negation {{nowrap|<math>-(\cdot)</math>}} of real numbers is not idempotent, but {{nowrap|<math>-(\cdot)\circ -(\cdot)</math>}} is. In both cases, the composition is simply the [[identity function]], which is idempotent.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Idempotence
(section)
Add topic