Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Holomorphic function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Terminology == The term ''holomorphic'' was introduced in 1875 by [[Charles Auguste Briot|Charles Briot]] and [[Jean-Claude Bouquet]], two of [[Augustin-Louis Cauchy]]'s students, and derives from the Greek [[wikt:ὅλος|ὅλος]] (''hólos'') meaning "whole", and [[wikt:μορφή|μορφή]] (''morphḗ'') meaning "form" or "appearance" or "type", in contrast to the term ''[[meromorphic function|meromorphic]]'' derived from [[wikt:μέρος|μέρος]] (''méros'') meaning "part". A holomorphic function resembles an [[entire function]] ("whole") in a [[domain (mathematical analysis)|domain]] of the complex plane while a meromorphic function (defined to mean holomorphic except at certain isolated [[Zeros and poles|poles]]), resembles a rational fraction ("part") of entire functions in a domain of the complex plane.<ref>The original French terms were ''holomorphe'' and ''méromorphe''. {{pb}} {{cite book |authorlink1= Charles Auguste Briot |last1=Briot |first1=Charles Auguste |authorlink2=Jean-Claude Bouquet |last2=Bouquet |first2=Jean-Claude |date=1875 |title=Théorie des fonctions elliptiques |edition=2nd |publisher=Gauthier-Villars |chapter=§15 fonctions holomorphes |chapter-url=https://archive.org/details/thoriedesfonct00briouoft/page/14/ |pages=14–15 |quote=Lorsqu'une fonction est continue, monotrope, et a une dérivée, quand la variable se meut dans une certaine partie du plan, nous dirons qu'elle est ''holomorphe'' dans cette partie du plan. Nous indiquons par cette dénomination qu'elle est semblable aux fonctions entières qui jouissent de ces propriétés dans toute l'étendue du plan. [...] ¶ Une fraction rationnelle admet comme pôles les racines du dénominateur; c'est une fonction holomorphe dans toute partie du plan qui ne contient aucun de ses pôles. ¶ Lorsqu'une fonction est holomorphe dans une partie du plan, excepté en certains pôles, nous dirons qu'elle est ''méromorphe'' dans cette partie du plan, c'est-à-dire semblable aux fractions rationnelles. |trans-quote=When a function is continuous, [[Monodromy|monotropic]], and has a derivative, when the variable moves in a certain part of the [complex] plane, we say that it is ''holomorphic'' in that part of the plane. We mean by this name that it resembles [[entire function]]s which enjoy these properties in the full extent of the plane. [...] ¶ A rational fraction admits as [[zeros and poles|poles]] the [[zeros and poles|roots]] of the denominator; it is a holomorphic function in all that part of the plane which does not contain any poles. ¶ When a function is holomorphic in part of the plane, except at certain poles, we say that it is ''meromorphic'' in that part of the plane, that is to say it resembles rational fractions.}} {{pb}} {{cite book |authorlink1=James Harkness (mathematician) |first1=James |last1=Harkness |authorlink2=Frank Morley |first2=Frank |last2=Morley |date=1893 |chapter=5. Integration |chapter-url=https://archive.org/details/treatiseontheory00harkrich/page/n176/ |title=A Treatise on the Theory of Functions |publisher=Macmillan |page=161}}</ref> Cauchy had instead used the term ''synectic''.<ref>Briot & Bouquet had previously also adopted Cauchy’s term ''synectic'' (''synectique'' in French), in the 1859 first edition of their book. {{pb}} {{cite book |authorlink1= Charles Auguste Briot |last1=Briot |first1=Charles Auguste |authorlink2=Jean-Claude Bouquet |last2=Bouquet |first2=Jean-Claude |date=1859 |title= Théorie des fonctions doublement périodiques |publisher= Mallet-Bachelier |chapter=§10 |chapter-url=https://archive.org/details/fonctsdoublement00briorich/page/n37/ |page=11 }}</ref> Today, the term "holomorphic function" is sometimes preferred to "analytic function". An important result in complex analysis is that every holomorphic function is complex analytic, a fact that does not follow obviously from the definitions. The term "analytic" is however also in wide use.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Holomorphic function
(section)
Add topic