Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Histidine
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Ligand=== [[Image:Succinate Dehygrogenase 1YQ3 Haem group.png|thumb|left|The histidine-bound [[heme]] group of [[succinate dehydrogenase]], an [[electron carrier]] in the [[mitochondria]]l [[electron transfer chain]]. The large semi-transparent sphere indicates the location of the [[iron]] [[ion]]. From {{PDB|1YQ3}}.|205x205px]] [[Image:Cu3Im8laccase.png|thumb|left|The tricopper site found in many [[laccase]]s, notice that each [[copper]] center is bound to the [[imidazole]] sidechains of histidine (color code: copper is brown, [[nitrogen]] is blue).]] Histidine forms [[amino acid complex|complexes]] with many metal ions. The imidazole sidechain of the histidine residue commonly serves as a [[ligand]] in [[metalloprotein]]s. One example is the axial base attached to Fe in myoglobin and hemoglobin. Poly-histidine tags (of six or more consecutive H residues) are utilized for protein purification by binding to columns with nickel or cobalt, with micromolar affinity.<ref>{{Cite book|last1=Bornhorst|first1=J. A.|last2=Falke|first2=J. J.|chapter=Purification of proteins using polyhistidine affinity tags |date=2000|title=Applications of Chimeric Genes and Hybrid Proteins Part A: Gene Expression and Protein Purification|series=Methods in Enzymology|volume=326|pages=245–254|doi=10.1016/s0076-6879(00)26058-8|issn=0076-6879|pmc=2909483|pmid=11036646|isbn=978-0-12-182227-9 }}</ref> Natural poly-histidine peptides, found in the venom of the viper ''[[Atheris squamigera]]'' have been shown to bind Zn(II), Ni(II) and Cu(II) and affect the function of venom metalloproteases.<ref>{{Cite journal|last1=Watly|first1=Joanna|last2=Simonovsky|first2=Eyal|last3=Barbosa|first3=Nuno|last4=Spodzieja|first4=Marta|last5=Wieczorek|first5=Robert|last6=Rodziewicz-Motowidlo|first6=Sylwia|last7=Miller|first7=Yifat|last8=Kozlowski|first8=Henryk|date=2015-08-17|title=African Viper Poly-His Tag Peptide Fragment Efficiently Binds Metal Ions and Is Folded into an α-Helical Structure|url=https://pubmed.ncbi.nlm.nih.gov/26214303|journal=Inorganic Chemistry|volume=54|issue=16|pages=7692–7702|doi=10.1021/acs.inorgchem.5b01029|issn=1520-510X|pmid=26214303}}</ref> N-terminal histidines are known to function as [[bidentate]] ligands, with a metal (generally copper) bound to both the amine of the [[N-terminus]] and the N<sub>ε</sub> of the histidine; the N<sub>δ</sub> is often methylated.<ref name="Walton2023">{{Cite journal |last1=Walton |first1=Paul H. |last2=Davies |first2=Gideon J. |last3=Diaz |first3=Daniel E. |last4=Franco-Cairo |first4=João P. |date=2023 |title=The histidine brace: nature's copper alternative to haem? |journal=FEBS Letters |language=en |volume=597 |issue=4 |pages=485–494 |doi=10.1002/1873-3468.14579 |issn=1873-3468 |pmc=10952591 |pmid=36660911}}</ref> Although recently discovered,<ref>{{Cite journal |last1=Quinlan |first1=R. Jason |last2=Sweeney |first2=Matt D. |last3=Lo Leggio |first3=Leila |last4=Otten |first4=Harm |last5=Poulsen |first5=Jens-Christian N. |last6=Johansen |first6=Katja Salomon |last7=Krogh |first7=Kristian B. R. M. |last8=Jørgensen |first8=Christian Isak |last9=Tovborg |first9=Morten |last10=Anthonsen |first10=Annika |last11=Tryfona |first11=Theodora |last12=Walter |first12=Clive P. |last13=Dupree |first13=Paul |last14=Xu |first14=Feng |last15=Davies |first15=Gideon J. |date=2011-09-13 |title=Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components |journal=Proceedings of the National Academy of Sciences |volume=108 |issue=37 |pages=15079–15084 |doi=10.1073/pnas.1105776108 |doi-access=free |pmc=3174640 |pmid=21876164}}</ref> this "histidine brace" motif is critical in biogeochemical cycles: it functions as the active site of lytic polysaccharide monooxygenases (LPMOs), which break down unreactive polysaccharides such as cellulose.<ref>{{Cite journal |last1=Munzone |first1=Alessia |last2=Eijsink |first2=Vincent G. H. |last3=Berrin |first3=Jean-Guy |last4=Bissaro |first4=Bastien |date=February 2024 |title=Expanding the catalytic landscape of metalloenzymes with lytic polysaccharide monooxygenases |url=https://www.nature.com/articles/s41570-023-00565-z |journal=Nature Reviews Chemistry |language=en |volume=8 |issue=2 |pages=106–119 |doi=10.1038/s41570-023-00565-z |pmid=38200220 |issn=2397-3358}}</ref> It is proposed that the evolution of these enzymes in fungi corresponds to the first widespread ability to decompose woody plant mass, leading to the end of the [[Carboniferous|Carboniferous era]] and its mass [[Carboniferous#Coal formation|accumulation of coal deposits]].<ref name="Walton2023" />
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Histidine
(section)
Add topic