Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Goodstein's theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Goodstein sequences == The '''Goodstein sequence''' <math>G_m</math> of a number ''m'' is a sequence of natural numbers. The first element in the sequence <math>G_m</math> is ''m'' itself. To get the second, <math>G_m (2)</math>, write ''m'' in hereditary base-2 notation, change all the 2s to 3s, and then subtract 1 from the result. In general, the {{nowrap|1 + ''n''th}} term, <math>G_m (n+1)</math>, of the Goodstein sequence of ''m'' is as follows: * Take the hereditary base-{{nowrap|''n''β+β1}} representation of <math>G_m (n)</math>. * Replace each occurrence of the base-{{nowrap|''n''β+β1}} with {{nowrap|''n''β+β2}}. * Subtract one. (Note that the next term depends both on the previous term and on the index ''n''.) * Continue until the result is zero, at which point the sequence terminates. Early Goodstein sequences terminate quickly. For example, <math>G_3</math> terminates at the 6th step: {| class="wikitable" border="1" |- ! Base !! Hereditary notation !! Value !! Notes |- | 2 || <math> 2^1 + 1 </math> || 3 || Write 3 in base-2 notation |- | 3 || <math> 3^1 + 1 - 1 = 3^1 </math> || 3 || Switch the 2 to a 3, then subtract 1 |- | 4 || <math> 4^1 - 1 = 3 </math> || 3 || Switch the 3 to a 4, then subtract 1. Now there are no more 4's left |- | 5 || <math> 3 - 1 = 2 </math> || 2 || No 4's left to switch to 5's. Just subtract 1 |- | 6 || <math> 2 - 1 = 1 </math> || 1 || No 5's left to switch to 6's. Just subtract 1 |- | 7 || <math> 1 - 1 = 0 </math> || 0 || No 6's left to switch to 7's. Just subtract 1 |} Later Goodstein sequences increase for a very large number of steps. For example, <math>G_4</math> {{OEIS2C|id=A056193}} starts as follows: {| class="wikitable" border="1" |- ! Base !! Hereditary notation !! Value |- | 2 || <math> 2^{2^1} </math> || 4 |- | 3 || <math> 3^{3^1} - 1 = 2 \cdot 3^2 + 2 \cdot 3 + 2 </math> || 26 |- | 4 || <math> 2 \cdot 4^2 + 2 \cdot 4 + 1 </math> || 41 |- | 5 || <math> 2 \cdot 5^2 + 2 \cdot 5 </math> || 60 |- | 6 || <math> 2 \cdot 6^2 + 2 \cdot 6 - 1 = 2 \cdot 6^2 + 6 + 5 </math> || 83 |- | 7 || <math> 2 \cdot 7^2 + 7 + 4 </math> || 109 |- align=center | <math> \vdots </math> || <math> \vdots </math> || <math> \vdots </math> |- | 11 || <math> 2 \cdot 11^2 + 11 </math> || 253 |- | 12 || <math> 2 \cdot 12^2 + 12 - 1 = 2 \cdot 12^2 + 11 </math> || 299 |- align=center | <math> \vdots </math> || <math> \vdots </math> || <math> \vdots </math> |- | 24 || <math> 2 \cdot 24^2 - 1 = 24^2 + 23 \cdot 24 + 23 </math> || 1151 |- align=center | <math> \vdots </math> || <math> \vdots </math> || <math> \vdots </math> |- | <math> B = 3 \cdot 2^{402\,653\,209} - 1 </math> || <math> 2 \cdot B^1 </math> || <math> 3 \cdot 2^{402\,653\,210} - 2 </math> |- | <math> B = 3 \cdot 2^{402\,653\,209} </math> || <math> 2 \cdot B^1 - 1 = B^1 + (B-1) </math> || <math> 3 \cdot 2^{402\,653\,210} - 1 </math> |- align=center | <math> \vdots </math> || <math> \vdots </math> || <math> \vdots </math> |} Elements of <math>G_4</math> continue to increase for a while, but at base <math>3 \cdot 2^{402\,653\,209}</math>, they reach the maximum of <math>3 \cdot 2^{402\,653\,210} - 1</math>, stay there for the next <math>3 \cdot 2^{402\,653\,209}</math> steps, and then begin their descent. However, even <math>G_4</math> doesn't give a good idea of just ''how'' quickly the elements of a Goodstein sequence can increase. <math>G_{19}</math> increases much more rapidly and starts as follows: {| class="wikitable" border="1" |- ! Hereditary notation !! Value |- | <math> 2^{2^2} + 2 + 1 </math> || 19 |- | <math> 3^{3^3} + 3 </math> || {{val|7,625,597,484,990}} |- | <math> 4^{4^4} + 3 </math> || <math> \approx 1.3 \times 10^{154} </math> |- | <math> 5^{5^5} + 2 </math> || <math> \approx 1.8 \times 10^{2\,184} </math> |- | <math> 6^{6^6} + 1 </math> || <math> \approx 2.6 \times 10^{36\,305} </math> |- | <math> 7^{7^7} </math> || <math> \approx 3.8 \times 10^{695\,974} </math> |- | <math> 8^{8^8} - 1 = 7 \cdot 8^{7 \cdot 8^7 + 7 \cdot 8^6 + 7 \cdot 8^5 + 7 \cdot 8^4 + 7 \cdot 8^3 + 7 \cdot 8^2 + 7 \cdot 8 + 7}</math> <math>{}+ 7 \cdot 8^{7 \cdot 8^7 + 7 \cdot 8^6 + 7 \cdot 8^5 + 7 \cdot 8^4 + 7 \cdot 8^3 + 7 \cdot 8^2 + 7 \cdot 8 + 6} + \cdots</math> <math>{}+ 7 \cdot 8^{8+2} + 7 \cdot 8^{8+1} + 7 \cdot 8^8 </math> <math>{}+ 7 \cdot 8^7 + 7 \cdot 8^6 + 7 \cdot 8^5 + 7 \cdot 8^4 </math> <math>{}+ 7 \cdot 8^3 + 7 \cdot 8^2 + 7 \cdot 8 + 7</math> | <math> \approx 6.0 \times 10^{15\,151\,335} </math> |- | <math>7 \cdot 9^{7 \cdot 9^7 + 7 \cdot 9^6 + 7 \cdot 9^5 + 7 \cdot 9^4 + 7 \cdot 9^3 + 7 \cdot 9^2 + 7 \cdot 9 + 7}</math> <math>{}+ 7 \cdot 9^{7 \cdot 9^7 + 7 \cdot 9^6 + 7 \cdot 9^5 + 7 \cdot 9^4 + 7 \cdot 9^3 + 7 \cdot 9^2 + 7 \cdot 9 + 6} + \cdots</math> <math>{}+ 7 \cdot 9^{9+2} + 7 \cdot 9^{9+1}+ 7 \cdot 9^9 </math> <math>{}+ 7 \cdot 9^7 + 7 \cdot 9^6 + 7 \cdot 9^5 + 7 \cdot 9^4 </math> <math>{}+ 7 \cdot 9^3 + 7 \cdot 9^2 + 7 \cdot 9 + 6</math> | <math> \approx 5.6 \times 10^{35\,942\,384} </math> |- align=center | <math> \vdots </math> || <math> \vdots </math> |} In spite of this rapid growth, Goodstein's theorem states that every Goodstein sequence eventually terminates at 0, no matter what the starting value is.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Goodstein's theorem
(section)
Add topic