Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Gamma function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definition == === Main definition === The notation <math>\Gamma (z)</math> is due to [[Adrien-Marie Legendre|Legendre]].<ref name="Davis" /> If the real part of the complex number {{mvar|z}} is strictly positive (<math>\Re (z) > 0</math>), then the [[integral]] <math display="block"> \Gamma(z) = \int_0^\infty t^{z-1} e^{-t}\, dt</math> [[absolute convergence|converges absolutely]], and is known as the '''Euler integral of the second kind'''. (Euler's integral of the first kind is the [[beta function]].<ref name="Davis" />) Using [[integration by parts]], one sees that: [[File:Plot of gamma function in complex plane in 3D with color and legend and 1000 plot points created with Mathematica.svg|alt=Absolute value (vertical) and argument (color) of the gamma function on the complex plane|thumb|Absolute value (vertical) and argument (color) of the gamma function on the complex plane]] <math display="block">\begin{align} \Gamma(z+1) & = \int_0^\infty t^{z} e^{-t} \, dt \\ &= \Bigl[-t^z e^{-t}\Bigr]_0^\infty + \int_0^\infty z t^{z-1} e^{-t}\, dt \\ &= \lim_{t\to \infty}\left(-t^z e^{-t}\right) - \left(-0^z e^{-0}\right) + z\int_0^\infty t^{z-1} e^{-t}\, dt. \end{align}</math> Recognizing that <math>-t^z e^{-t}\to 0</math> as <math>t\to \infty,</math> <math display="block">\begin{align} \Gamma(z+1) & = z\int_0^\infty t^{z-1} e^{-t}\, dt \\ &= z\Gamma(z). \end{align}</math> Then {{nowrap|<math>\Gamma(1)</math>}} can be calculated as: <math display="block">\begin{align} \Gamma(1) & = \int_0^\infty t^{1-1} e^{-t}\,dt \\ & = \int_0^\infty e^{-t} \, dt \\ & = 1. \end{align}</math> Thus we can show that <math>\Gamma(n) = (n-1)!</math> for any positive integer {{mvar|n}} by [[proof by induction|induction]]. Specifically, the base case is that <math>\Gamma(1) = 1 = 0!</math>, and the induction step is that <math>\Gamma(n+1) = n\Gamma(n) = n(n-1)! = n!.</math> The identity <math display="inline">\Gamma(z) = \frac {\Gamma(z + 1)} {z}</math> can be used (or, yielding the same result, [[analytic continuation]] can be used) to uniquely extend the integral formulation for <math>\Gamma (z)</math> to a [[meromorphic function]] defined for all complex numbers {{mvar|z}}, except integers less than or equal to zero.<ref name="Davis" /> It is this extended version that is commonly referred to as the gamma function.<ref name="Davis" /> === Alternative definitions === There are many equivalent definitions. ==== Euler's definition as an infinite product ==== <!-- Linked to from [[Binomial coefficient]] -->For a fixed integer <math>m</math>, as the integer <math>n</math> increases, we have that<ref>{{Cite journal |last=Davis |first=Philip |title=Leonhard Euler's Integral: A Historical Profile of the Gamma Function |url=https://ia800108.us.archive.org/view_archive.php?archive=/24/items/wikipedia-scholarly-sources-corpus/10.2307%252F2287541.zip&file=10.2307%252F2309786.pdf |website=maa.org}}</ref> <math display="block">\lim_{n \to \infty} \frac{n! \, \left(n+1\right)^m}{(n+m)!} = 1\,.</math> If <math>m</math> is not an integer, then this equation is meaningless, since in this section the factorial of a non-integer has not been defined yet. However, let us assume that this equation continues to hold when <math>m</math> is replaced by an arbitrary complex number <math>z</math>, in order to define the Gamma function for non-integers: <math display="block">\lim_{n \to \infty} \frac{n! \, \left(n+1\right)^z}{(n+z)!} = 1\,.</math> Multiplying both sides by <math>(z-1)!</math> gives <math display="block">\begin{align} (z-1)! &= \frac{1}{z} \lim_{n \to \infty} n!\frac{z!}{(n+z)!} (n+1)^z \\[8pt] &= \frac{1}{z} \lim_{n \to \infty} (1 \cdot2\cdots n)\frac{1}{(1+z) \cdots (n+z)} \left(\frac{2}{1} \cdot \frac{3}{2} \cdots \frac{n+1}{n}\right)^z \\[8pt] &= \frac{1}{z} \prod_{n=1}^\infty \left[ \frac{1}{1+\frac{z}{n}} \left(1 + \frac{1}{n}\right)^z \right]. \end{align}</math>This [[infinite product]], which is due to Euler,<ref>{{Cite journal |last=Bonvini |first=Marco |date=October 9, 2010 |title=The Gamma function |url=https://www.roma1.infn.it/~bonvini/math/Marco_Bonvini__Gamma_function.pdf |journal=Roma1.infn.it}}</ref> converges for all complex numbers <math>z</math> except the non-positive integers, which fail because of a division by zero. In fact, the above assumption produces a unique definition of <math>\Gamma(z)</math> as {{tmath|(z-1)!}}. Intuitively, this formula indicates that <math>\Gamma(z)</math> is approximately the result of computing <math>\Gamma(n+1)=n!</math> for some large integer <math>n</math>, multiplying by <math>(n+1)^z</math> to approximate <math>\Gamma(n+z+1)</math>, and then using the relationship <math>\Gamma(x+1) = x \Gamma(x)</math> backwards <math>n+1</math> times to get an approximation for <math>\Gamma(z)</math>; and furthermore that this approximation becomes exact as <math>n</math> increases to infinity. The infinite product for the [[reciprocal gamma function|reciprocal]] <math display="block">\frac{1}{\Gamma(z)} = z \prod_{n=1}^\infty \left[ \left(1+\frac{z}{n}\right) / {\left(1 + \frac{1}{n}\right)^z} \right]</math> is an [[entire function]], converging for every complex number {{mvar|z}}. ==== Weierstrass's definition ==== The definition for the gamma function due to [[Karl Weierstrass|Weierstrass]] is also valid for all complex numbers <math>z</math> except non-positive integers: <math display="block">\Gamma(z) = \frac{e^{-\gamma z}} z \prod_{n=1}^\infty \left(1 + \frac z n \right)^{-1} e^{z/n},</math> where <math>\gamma \approx 0.577216</math> is the [[Euler–Mascheroni constant]].<ref name="Davis" /> This is the [[Entire function#Genus|Hadamard product]] of <math>1/\Gamma(z)</math> in a rewritten form. {{Collapse top|title=Proof of equivalence of the three definitions}} '''Equivalence of the integral definition and Weierstrass definition''' By the integral definition, the relation <math>\Gamma (z+1)=z\Gamma (z)</math> and [[Hadamard factorization theorem]], <math display="block>\frac{1}{\Gamma (z)}=ze^{c_1 z+c_2}\prod_{n=1}^\infty e^{-\frac{z}{n}}\left(1+\frac{z}{n}\right)</math> for some constants <math>c_1,c_2</math> since <math>1/\Gamma</math> is an entire function of order <math>1</math>. Since <math>z\Gamma (z)\to 1</math> as <math>z\to 0</math>, <math>c_2=0</math> (or an integer multiple of <math>2\pi i</math>) and since <math>\Gamma (1)=1</math>, <math display="block">\begin{align}e^{-c_1} &=\prod_{n=1}^\infty e^{-\frac{1}{n}}\left(1+\frac{1}{n}\right)\\ &=\exp\left(\lim_{N\to\infty}\sum_{n=1}^N \left(\log\left(1+\frac{1}{n}\right)-\frac{1}{n}\right)\right)\\ &=\exp\left(\lim_{N\to\infty}\left(\log (N+1)-\sum_{n=1}^N \frac{1}{n}\right)\right).\end{align}</math> where <math>c_1=\gamma+2\pi i k</math> for some integer <math>k</math>. Since <math>\Gamma (z)\in\mathbb{R}</math> for <math>z\in\mathbb{R}\setminus\mathbb{Z}_0^-</math>, we have <math>k=0</math> and <math display="block>\frac{1}{\Gamma (z)}=ze^{\gamma z}\prod_{n=1}^\infty e^{-\frac{z}{n}}\left(1+\frac{z}{n}\right)</math> '''Equivalence of the Weierstrass definition and Euler definition''' <math display="block">\begin{align}\Gamma (z)&=\frac{e^{-\gamma z}}{z}\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{-1}e^{z/n}\\ &=\frac1z\lim_{n\to\infty}e^{z\left(\log (n+1)-1-\frac{1}{2}-\frac{1}{3}-\cdots-\frac{1}{n}\right)}\frac{e^{z\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)}}{\left(1+z\right)\left(1+\frac{z}{2}\right)\cdots\left(1+\frac{z}{n}\right)}\\ &=\frac1z\lim_{n\to\infty}\frac{1}{\left(1+z\right)\left(1+\frac{z}{2}\right)\cdots\left(1+\frac{z}{n}\right)}e^{z\log\left(n+1\right)}\\ &=\lim_{n\to\infty}\frac{n!(n+1)^z}{z(z+1)\cdots (z+n)},\quad z\in\mathbb{C}\setminus\mathbb{Z}_0^-\end{align}</math> {{Collapse bottom}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Gamma function
(section)
Add topic