Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Freiling's axiom of symmetry
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Relation to the (Generalised) Continuum Hypothesis== Fix <math>\kappa\,</math> an infinite cardinal (''e.g.'' <math>\aleph_{0}\,</math>). Let <math>\texttt{AX}_{\kappa}</math> be the statement: ''there is no map <math>f:\mathcal{P}(\kappa)\to[\mathcal{P}(\kappa)]^{\leq\kappa}\,</math> from sets to <math>\leq\kappa</math>-sized collections of sets such that for any <math>{x,y\in\mathcal{P}(\kappa)}\,</math> either <math>x\in f(y)\,</math> or <math>y\in f(x)\,</math>.'' '''Claim:''' <math>\texttt{ZFC}\vdash 2^{\kappa}=\kappa^{+}\leftrightarrow\neg\texttt{AX}_{\kappa}\,</math>. '''Proof:''' ''Part I'' (<math>\Rightarrow\,</math>): Suppose <math>2^{\kappa}=\kappa^{+}\,</math>. Then there exists a bijection <math>\sigma:\kappa^{+}\to\mathcal{P}(\kappa)\,</math>. We will exploit the well-ordering of <math>\kappa^+</math> to build an ascending chain in <math>[\mathcal P(\kappa)]^{\leq\kappa}</math>. Define a function <math>f:\mathcal{P}(\kappa)\to[\mathcal{P}(\kappa)]^{\leq\kappa}\,</math> by <math>\sigma(\alpha) \mapsto \{\sigma(\beta) : \beta \leq \alpha\}\,</math>. Given this function, it is straightforward to see that this demonstrates the failure of Freiling's axiom. The map <math>\sigma</math> induces a well-ordering <math>\preceq</math> on <math>\mathcal P(\kappa)</math> (sometimes called the ''pushforward'' of the standard ordering on <math>\kappa</math>). Picking any two <math>x,y \in \mathcal P(\kappa)</math>, we can state without loss of generality that <math>x \preceq y</math>. But then, noting the definition of <math>f</math>, we see that this implies <math>x \in f(y) = \{t \in \mathcal P(\kappa) : t \preceq y \}</math>. Thus we have found a function <math>f</math> witnessing <math>\neg\texttt{AX}_\kappa</math>. ''Part II'' (<math>\Leftarrow\,</math>): Suppose that Freiling's axiom fails. Then fix some <math>f\,</math> to verify this fact. Define an order relation on <math>\mathcal{P}(\kappa)\,</math> by <math>A\leq_{f} B</math> iff <math>A\in f(B)</math>. This relation is total and every point has <math>\leq\kappa</math> many predecessors. Define now a strictly increasing chain <math>(A_{\alpha}\in\mathcal{P}(\kappa))_{\alpha<\kappa^{+}}</math> as follows: at each stage choose <math>A_{\alpha}\in\mathcal{P}(\kappa)\setminus\bigcup_{\xi<\alpha}f(A_{\xi})</math>. This process can be carried out since for every ordinal <math>\alpha<\kappa^{+}\,</math>, <math>\bigcup_{\xi<\alpha}f(A_{\xi})\,</math> is a union of <math>\leq\kappa\,</math> many sets of size <math>\leq\kappa\,</math>; thus is of size <math>\leq\kappa<2^{\kappa}\,</math> and so is a strict subset of <math>\mathcal{P}(\kappa)\,</math>. We also have that this sequence is ''cofinal'' in the order defined, ''i.e.'' every member of <math>\mathcal{P}(\kappa)\,</math> is <math>\leq_{f}\,</math> some <math>A_{\alpha}\,</math>. (For otherwise if <math>B\in\mathcal{P}(\kappa)\,</math> is not <math>\leq_{f}\,</math> some <math>A_{\alpha}</math>, then since the order is total <math>(\forall{\alpha<\kappa^{+}})A_{\alpha}\leq_{f} B\,</math>; implying <math>B\,</math> has <math>\geq\kappa^{+}>\kappa\,</math> many predecessors; a contradiction.) Thus we may well-define a map <math>g:\mathcal{P}(\kappa)\to\kappa^{+}\,</math> by <math>B\mapsto\operatorname{min}\{\alpha<\kappa^{+}:B\in f(A_{\alpha})\}</math>. So <math>\mathcal{P}(\kappa)=\bigcup_{\alpha<\kappa^{+}}g^{-1}\{\alpha\}=\bigcup_{\alpha<\kappa^{+}}f(A_{\alpha})\,</math> which is union of <math>\kappa^{+}\,</math> many sets each of size <math>\leq\kappa\,</math>. Hence <math>2^{\kappa}\leq\kappa^{+}\cdot\kappa=\kappa^{+}\,</math>. {{NumBlk|1=|2=|3=<math>\blacksquare</math> (Claim)|RawN=.}} Note that <math>|[0,1]|=|\mathcal{P}(\aleph_{0})|\,</math> so we can easily rearrange things to obtain that <math>\neg\texttt{CH}\Leftrightarrow\,</math> the above-mentioned form of Freiling's axiom. The above can be made more precise: <math>\texttt{ZF}\vdash(\texttt{AC}_{\mathcal{P}(\kappa)}+\neg\texttt{AX}_{\kappa})\leftrightarrow \texttt{CH}_{\kappa}\,</math>. This shows (together with the fact that the continuum hypothesis is independent of choice) a precise way in which the (generalised) continuum hypothesis is an extension of the axiom of choice.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Freiling's axiom of symmetry
(section)
Add topic