Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Euler numbers
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Explicit formulas == === In terms of Stirling numbers of the second kind === The following two formulas express the Euler numbers in terms of [[Stirling numbers of the second kind]]:<ref>{{cite journal | first1=Sumit Kumar | last1= Jha | title=A new explicit formula for Bernoulli numbers involving the Euler number | journal=Moscow Journal of Combinatorics and Number Theory | volume=8 | issue=4 | pages=385β387 | year=2019 | url= https://projecteuclid.org/euclid.moscow/1572314455| doi= 10.2140/moscow.2019.8.389 | s2cid= 209973489 }}</ref><ref>{{cite web |url=https://osf.io/smw7h/ |title=A new explicit formula for the Euler numbers in terms of the Stirling numbers of the second kind |last=Jha |first=Sumit Kumar |date= 15 November 2019}}</ref> :<math> E_{n}=2^{2n-1}\sum_{\ell=1}^{n}\frac{(-1)^{\ell}S(n,\ell)}{\ell+1}\left(3\left(\frac{1}{4}\right)^{\overline{\ell\phantom{.}}}-\left(\frac{3}{4}\right)^{\overline{\ell\phantom{.}}}\right), </math> :<math> E_{2n}=-4^{2n}\sum_{\ell=1}^{2n}(-1)^{\ell}\cdot \frac{S(2n,\ell)}{\ell+1}\cdot \left(\frac{3}{4}\right)^{\overline{\ell\phantom{.}}},</math> where <math> S(n,\ell) </math> denotes the [[Stirling numbers of the second kind]], and <math> x^{\overline{\ell\phantom{.}}}=(x)(x+1)\cdots (x+\ell-1) </math> denotes the [[Falling and rising factorials|rising factorial]]. === As a recursion === The Euler numbers can be defined as an recursion: <math>E_{2n}=-\sum_{{k=1}}^{n}\binom{2n}{2k}E_{2(n-k)},</math> or alternatively: <math>1=-\sum_{{k=1}}^{n}\binom{2n}{2k}E_{2k},</math> Both of these recursions can be found by using the fact that. <math>cos(x)sec(x)=1.</math> ===As a double sum=== The following two formulas express the Euler numbers as double sums<ref>{{cite journal | first1=Chun-Fu | last1= Wei | first2=Feng | last2=Qi | title=Several closed expressions for the Euler numbers | journal=Journal of Inequalities and Applications | volume=219 | issue=2015| year=2015 | doi= 10.1186/s13660-015-0738-9 | doi-access=free }} </ref> :<math>E_{2n}=(2 n+1)\sum_{\ell=1}^{2n} (-1)^{\ell}\frac{1}{2^{\ell}(\ell +1)}\binom{2 n}{\ell}\sum _{q=0}^{\ell}\binom{\ell}{q}(2q-\ell)^{2n}, </math> :<math>E_{2n}=\sum_{k=1}^{2n}(-1)^{k} \frac{1}{2^{k}}\sum_{\ell=0}^{2k}(-1)^{\ell } \binom{2k}{\ell}(k-\ell)^{2n}. </math> ===As an iterated sum=== An explicit formula for Euler numbers is:<ref>{{cite web |url=https://oeis.org/A000111/a000111.pdf |archive-url=https://web.archive.org/web/20140409060145/http://oeis.org/A000111/a000111.pdf |archive-date=2014-04-09 |url-status=live |title=An Explicit Formula for the Euler zigzag numbers (Up/down numbers) from power series |last=Tang |first=Ross |date= 2012-05-11}} </ref> :<math>E_{2n}=i\sum _{k=1}^{2n+1} \sum _{\ell=0}^k \binom{k}{\ell}\frac{(-1)^\ell(k-2\ell)^{2n+1}}{2^k i^k k},</math> where {{mvar|i}} denotes the [[imaginary unit]] with {{math|''i''<sup>2</sup> {{=}} β1}}. ===As a sum over partitions=== The Euler number {{math|''E''<sub>2''n''</sub>}} can be expressed as a sum over the even [[Integer partition|partitions]] of {{math|2''n''}},<ref>{{cite journal | first1=David C. | last1= Vella | title=Explicit Formulas for Bernoulli and Euler Numbers | journal=Integers | volume=8 | issue=1 | pages=A1 | year=2008 | url= http://www.integers-ejcnt.org/vol8.html}}</ref> :<math> E_{2n} = (2n)! \sum_{0 \leq k_1, \ldots, k_n \leq n} \binom K {k_1, \ldots , k_n} \delta_{n,\sum mk_m} \left( -\frac{1}{2!} \right)^{k_1} \left( -\frac{1}{4!} \right)^{k_2} \cdots \left( -\frac{1}{(2n)!} \right)^{k_n} ,</math> as well as a sum over the odd partitions of {{math|2''n'' β 1}},<ref>{{cite arXiv | eprint=1103.1585 | first1= J. | last1=Malenfant | title=Finite, Closed-form Expressions for the Partition Function and for Euler, Bernoulli, and Stirling Numbers| class= math.NT | year= 2011 }}</ref> :<math> E_{2n} = (-1)^{n-1} (2n-1)! \sum_{0 \leq k_1, \ldots, k_n \leq 2n-1} \binom K {k_1, \ldots , k_n} \delta_{2n-1,\sum (2m-1)k_m } \left( -\frac{1}{1!} \right)^{k_1} \left( \frac{1}{3!} \right)^{k_2} \cdots \left( \frac{(-1)^n}{(2n-1)!} \right)^{k_n} , </math> where in both cases {{math|''K'' {{=}} ''k''<sub>1</sub> + Β·Β·Β· + ''k<sub>n</sub>''}} and :<math> \binom K {k_1, \ldots , k_n} \equiv \frac{ K!}{k_1! \cdots k_n!}</math> is a [[multinomial coefficient]]. The [[Kronecker delta]]s in the above formulas restrict the sums over the {{mvar|k}}s to {{math|2''k''<sub>1</sub> + 4''k''<sub>2</sub> + Β·Β·Β· + 2''nk<sub>n</sub>'' {{=}} 2''n''}} and to {{math|''k''<sub>1</sub> + 3''k''<sub>2</sub> + Β·Β·Β· + (2''n'' β 1)''k<sub>n</sub>'' {{=}} 2''n'' β 1}}, respectively. As an example, :<math> \begin{align} E_{10} & = 10! \left( - \frac{1}{10!} + \frac{2}{2!\,8!} + \frac{2}{4!\,6!} - \frac{3}{2!^2\, 6!}- \frac{3}{2!\,4!^2} +\frac{4}{2!^3\, 4!} - \frac{1}{2!^5}\right) \\[6pt] & = 9! \left( - \frac{1}{9!} + \frac{3}{1!^2\,7!} + \frac{6}{1!\,3!\,5!} +\frac{1}{3!^3}- \frac{5}{1!^4\,5!} -\frac{10}{1!^3\,3!^2} + \frac{7}{1!^6\, 3!} - \frac{1}{1!^9}\right) \\[6pt] & = -50\,521. \end{align} </math> ===As a determinant=== {{math|''E''<sub>2''n''</sub>}} is given by the [[determinant]] :<math> \begin{align} E_{2n} &=(-1)^n (2n)!~ \begin{vmatrix} \frac{1}{2!}& 1 &~& ~&~\\ \frac{1}{4!}& \frac{1}{2!} & 1 &~&~\\ \vdots & ~ & \ddots~~ &\ddots~~ & ~\\ \frac{1}{(2n-2)!}& \frac{1}{(2n-4)!}& ~&\frac{1}{2!} & 1\\ \frac{1}{(2n)!}&\frac{1}{(2n-2)!}& \cdots & \frac{1}{4!} & \frac{1}{2!}\end{vmatrix}. \end{align} </math> ===As an integral=== {{math|''E''<sub>2''n''</sub>}} is also given by the following integrals: :<math> \begin{align} (-1)^n E_{2n} & = \int_0^\infty \frac{t^{2n}}{\cosh\frac{\pi t}2}\; dt =\left(\frac2\pi\right)^{2n+1} \int_0^\infty \frac{x^{2n}}{\cosh x}\; dx\\[8pt] &=\left(\frac2\pi\right)^{2n} \int_0^1\log^{2n}\left(\tan \frac{\pi t}{4} \right)\,dt =\left(\frac2\pi\right)^{2n+1}\int_0^{\pi/2} \log^{2n}\left(\tan \frac{x}{2} \right)\,dx\\[8pt] &= \frac{2^{2n+3}}{\pi^{2n+2}} \int_0^{\pi/2} x \log^{2n} (\tan x)\,dx = \left(\frac2\pi\right)^{2n+2} \int_0^\pi \frac{x}{2} \log^{2n} \left(\tan \frac{x}{2} \right)\,dx.\end{align} </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Euler numbers
(section)
Add topic