Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Euler's constant
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Appearances == Euler's constant appears frequently in mathematics, especially in [[number theory]] and [[Mathematical analysis|analysis]].<ref>{{Cite web |last=Sondow |first=Jonathan |date=2004 |title=The Euler constant: γ |url=http://numbers.computation.free.fr/Constants/Gamma/gamma.html |access-date=2024-11-01}}</ref> Examples include, among others, the following places: (''where'' ''<nowiki/>'*' means that this entry contains an explicit equation''): ===Analysis=== * The Weierstrass product formula for the [[gamma function]] and the [[Barnes G-function]].<ref name="Davis">{{cite journal |last=Davis |first=P. J. |date=1959 |title=Leonhard Euler's Integral: A Historical Profile of the Gamma Function |url=http://mathdl.maa.org/mathDL/22/?pa=content&sa=viewDocument&nodeId=3104 |url-status=dead |journal=[[American Mathematical Monthly]] |volume=66 |issue=10 |pages=849–869 |doi=10.2307/2309786 |jstor=2309786 |archive-url=https://web.archive.org/web/20121107190256/http://mathdl.maa.org/mathDL/22/?pa=content&sa=viewDocument&nodeId=3104 |archive-date=7 November 2012 |access-date=3 December 2016}}</ref><ref>{{Cite web |title=DLMF: §5.17 Barnes' 𝐺-Function (Double Gamma Function) ‣ Properties ‣ Chapter 5 Gamma Function |url=https://dlmf.nist.gov/5.17 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref> * The [[Particular values of the gamma function#General rational argument|asymptotic expansion]] of the gamma function, <math>\Gamma(1/x)\sim x-\gamma</math>. * Evaluations of the [[digamma function]] at rational values.<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Digamma Function |url=https://mathworld.wolfram.com/DigammaFunction.html |access-date=2024-10-30 |website=mathworld.wolfram.com |language=en}}</ref> * The [[Laurent series]] expansion for the [[Riemann zeta function]]*, where it is the first of the [[Stieltjes constants]].<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Stieltjes Constants |url=https://mathworld.wolfram.com/StieltjesConstants.html |access-date=2024-11-01 |website=mathworld.wolfram.com |language=en}}</ref> * Values of the [[Particular values of the Riemann zeta function#Derivatives|derivative of the Riemann zeta function]] and [[Dirichlet beta function#Derivative|Dirichlet beta function]].<ref name=":7" />{{rp|137}}<ref name=":1" /> * In connection to the [[Laplace transform|Laplace]] and [[Mellin transform]].<ref>{{Cite book |last=Williams |first=John |title=Laplace transforms |date=1973 |publisher=Allen & Unwin |isbn=978-0-04-512021-5 |series=Problem solvers |location=London}}</ref><ref>{{Cite web |title=DLMF: §2.5 Mellin Transform Methods ‣ Areas ‣ Chapter 2 Asymptotic Approximations |url=https://dlmf.nist.gov/2.5 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref> * In the regularization/[[renormalization]] of the [[harmonic series (mathematics)|harmonic series]] as a finite value. *Expressions involving the [[exponential integral|exponential]] and [[Logarithmic integral function|logarithmic integral]].*<ref name=":8">{{Cite web |title=DLMF: §6.6 Power Series ‣ Properties ‣ Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals |url=https://dlmf.nist.gov/6.6 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref><ref>{{Cite web |last=Weisstein |first=Eric W. |title=Logarithmic Integral |url=https://mathworld.wolfram.com/LogarithmicIntegral.html |access-date=2024-11-01 |website=mathworld.wolfram.com |language=en}}</ref> * A definition of the [[trigonometric integral#Cosine integral|cosine integral]].*<ref name=":8" /> * In relation to [[Bessel function|Bessel functions]].<ref>{{Cite web |title=DLMF: §10.32 Integral Representations ‣ Modified Bessel Functions ‣ Chapter 10 Bessel Functions |url=https://dlmf.nist.gov/10.32 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref><ref>{{Cite web |title=DLMF: §10.22 Integrals ‣ Bessel and Hankel Functions ‣ Chapter 10 Bessel Functions |url=https://dlmf.nist.gov/10.22 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref><ref>{{Cite web |title=DLMF: §10.8 Power Series ‣ Bessel Functions and Hankel Functions ‣ Chapter 10 Bessel Functions |url=https://dlmf.nist.gov/10.8 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref><ref>{{Cite web |title=DLMF: §10.24 Functions of Imaginary Order ‣ Bessel and Hankel Functions ‣ Chapter 10 Bessel Functions |url=https://dlmf.nist.gov/10.24 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref> * Asymptotic expansions of modified [[Struve function|Struve functions]].<ref>{{Cite web |title=DLMF: §11.6 Asymptotic Expansions ‣ Struve and Modified Struve Functions ‣ Chapter 11 Struve and Related Functions |url=https://dlmf.nist.gov/11.6 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref> * In relation to other [[special functions]].<ref>{{Cite web |title=DLMF: §13.2 Definitions and Basic Properties ‣ Kummer Functions ‣ Chapter 11 Confluent Hypergeometric Functions |url=https://dlmf.nist.gov/13.2 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref><ref>{{Cite web |title=DLMF: §9.12 Scorer Functions ‣ Related Functions ‣ Chapter 9 Airy and Related Functions |url=https://dlmf.nist.gov/9.12 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref> ===Number theory=== * An inequality for [[Euler's totient function]].<ref>{{Cite journal |last1=Rosser |first1=J. Barkley |last2=Schoenfeld |first2=Lowell |date=1962 |title=Approximate formulas for some functions of prime numbers |url=https://projecteuclid.org/journals/illinois-journal-of-mathematics/volume-6/issue-1/Approximate-formulas-for-some-functions-of-prime-numbers/10.1215/ijm/1255631807.full |journal=Illinois Journal of Mathematics |volume=6 |issue=1 |pages=64–94 |doi=10.1215/ijm/1255631807 |issn=0019-2082}}</ref> * The growth rate of the [[divisor function]].<ref>{{Cite book |last1=Hardy |first1=Godfrey H. |title=An introduction to the theory of numbers |last2=Wright |first2=Edward M. |last3=Silverman |first3=Joseph H. |date=2008 |publisher=Oxford University Press |isbn=978-0-19-921986-5 |editor-last=Heath-Brown |editor-first=D. R. |edition=6th |series=Oxford mathematics |location=Oxford New York Auckland |page=469-471}}</ref> * A formulation of the [[Riemann hypothesis]].<ref name=":2" /><ref>{{Cite journal |last=Robin |first=Guy |date=1984 |title=Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann |url=http://zakuski.utsa.edu/~jagy/Robin_1984.pdf |journal=Journal de mathématiques pures et appliquées |volume=63 |pages=187–213}}</ref> * The third of [[Mertens' theorems]].*<ref name=":9" /> * The calculation of the [[Meissel–Mertens constant]].<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Mertens Constant |url=https://mathworld.wolfram.com/MertensConstant.html |access-date=2024-11-01 |website=mathworld.wolfram.com |language=en}}</ref> * Lower bounds to specific [[Prime gap#Lower bounds|prime gaps]].<ref>{{Cite journal |last=Pintz |first=János |date=1997-04-01 |title=Very Large Gaps between Consecutive Primes |url=https://www.sciencedirect.com/science/article/pii/S0022314X97920813 |journal=Journal of Number Theory |volume=63 |issue=2 |pages=286–301 |doi=10.1006/jnth.1997.2081 |issn=0022-314X}}</ref> * An [[approximation]] of the average number of [[Divisor|divisors]] of all numbers from 1 to a given ''n.''<ref name=":6" /> * The [[Lenstra–Pomerance–Wagstaff conjecture]] on the frequency of [[Mersenne prime|Mersenne primes]].<ref>{{Cite web |title=Heuristics: Deriving the Wagstaff Mersenne Conjecture |url=https://t5k.org/mersenne/heuristic.html |access-date=2024-11-01 |website=t5k.org}}</ref> * An estimation of the efficiency of the [[euclidean algorithm]].<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Porter's Constant |url=https://mathworld.wolfram.com/PortersConstant.html |access-date=2024-11-01 |website=mathworld.wolfram.com |language=en}}</ref> * Sums involving the [[Möbius function|Möbius]] and [[Von Mangoldt function|von Mangolt function]]. * Estimate of the divisor summatory function of the [[Dirichlet hyperbola method]].<ref>{{Cite book |last=Tenenbaum |first=Gérald |url=https://books.google.de/books?id=UEk-CgAAQBAJ&lpg=PR15&dq=dirichlet%20hyperbola%20method&hl=de&pg=PA360#v=onepage&q=dirichlet%20hyperbola%20method&f=false |title=Introduction to Analytic and Probabilistic Number Theory |date=2015-07-16 |publisher=American Mathematical Soc. |isbn=978-0-8218-9854-3 |language=en}}</ref> === In other fields === *In some formulations of [[Zipf's law]]. *The answer to the [[coupon collector's problem]].* * The mean of the [[Gumbel distribution]]. * An approximation of the [[Landau distribution]]. * The [[information entropy]] of the [[Weibull distribution|Weibull]] and [[Lévy distribution|Lévy]] distributions, and, implicitly, of the [[chi-squared distribution]] for one or two degrees of freedom. * An upper bound on [[Shannon entropy]] in [[quantum information science|quantum information theory]].{{r|CavesFuchs1996}} * In [[dimensional regularization]] of [[Feynman diagram]]s in [[quantum field theory]]. * In the BCS equation on the critical temperature in [[Bardeen–Cooper–Schrieffer|BCS theory]] of superconductivity.* * [[Fisher's geometric model|Fisher–Orr model]] for genetics of adaptation in evolutionary biology.{{r|ConnallonHodgins2021}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Euler's constant
(section)
Add topic