Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Dual space
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Finite-dimensional case === {{See also|Dual basis}} If <math>V</math> is finite-dimensional, then <math>V^*</math> has the same dimension as <math>V</math>. Given a [[basis of a vector space|basis]] <math>\{\mathbf{e}_1,\dots,\mathbf{e}_n\}</math> in <math>V</math>, it is possible to construct a specific basis in <math>V^*</math>, called the [[dual basis]]. This dual basis is a set <math>\{\mathbf{e}^1,\dots,\mathbf{e}^n\}</math> of linear functionals on <math>V</math>, defined by the relation : <math> \mathbf{e}^i(c^1 \mathbf{e}_1+\cdots+c^n\mathbf{e}_n) = c^i, \quad i=1,\ldots,n </math> for any choice of coefficients <math>c^i\in F</math>. In particular, letting in turn each one of those coefficients be equal to one and the other coefficients zero, gives the system of equations : <math> \mathbf{e}^i(\mathbf{e}_j) = \delta^{i}_{j} </math> where <math>\delta^{i}_{j}</math> is the [[Kronecker delta]] symbol. This property is referred to as the ''bi-orthogonality property''. {{Collapse top | Proof}} Consider <math>\{\mathbf{e}_1,\dots,\mathbf{e}_n\}</math> the basis of V. Let <math>\{\mathbf{e}^1,\dots,\mathbf{e}^n\}</math> be defined as the following: <math> \mathbf{e}^i(c^1 \mathbf{e}_1+\cdots+c^n\mathbf{e}_n) = c^i, \quad i=1,\ldots,n </math>. These are a basis of <math>V^*</math> because: # The <math>\mathbf{e}^i , i=1, 2, \dots, n, </math> are linear functionals, which map <math> x,y \in V </math> such as <math> x= \alpha_1\mathbf{e}_1 + \dots + \alpha_n\mathbf{e}_n </math> and <math> y = \beta_1\mathbf{e}_1 + \dots + \beta_n \mathbf{e}_n </math> to scalars <math> \mathbf{e}^i(x)=\alpha_i </math> and <math> \mathbf{e}^i(y)=\beta_i</math>. Then also, <math> x+\lambda y=(\alpha_1+\lambda \beta_1)\mathbf{e}_1 + \dots + (\alpha_n+\lambda\beta_n)\mathbf{e}_n </math> and <math> \mathbf{e}^i(x+\lambda y)=\alpha_i+\lambda\beta_i=\mathbf{e}^i(x)+\lambda \mathbf{e}^i(y) </math>. Therefore, <math> \mathbf{e}^i \in V^* </math> for <math> i= 1, 2, \dots, n </math>. # Suppose <math> \lambda_1 \mathbf{e}^1 + \cdots + \lambda_n \mathbf{e}^n =0 \in V^*</math>. Applying this functional on the basis vectors of <math> V </math> successively, lead us to <math> \lambda_1=\lambda_2= \dots=\lambda_n=0 </math> (The functional applied in <math> \mathbf{e}_i </math> results in <math> \lambda_i </math>). Therefore, <math>\{\mathbf{e}^1,\dots,\mathbf{e}^n\}</math> is linearly independent on <math>V^*</math>. #Lastly, consider <math> g \in V^* </math>. Then :<math> g(x)=g(\alpha_1\mathbf{e}_1 + \dots + \alpha_n\mathbf{e}_n)=\alpha_1g(\mathbf{e}_1) + \dots + \alpha_ng(\mathbf{e}_n)=\mathbf{e}^1(x)g(\mathbf{e}_1) + \dots + \mathbf{e}^n(x)g(\mathbf{e}_n) </math> and <math>\{\mathbf{e}^1,\dots,\mathbf{e}^n\}</math> generates <math>V^*</math>. Hence, it is a basis of <math> V^*</math>. {{Collapse bottom}} For example, if <math>V</math> is <math>\R^2</math>, let its basis be chosen as <math>\{\mathbf{e}_1=(1/2,1/2),\mathbf{e}_2=(0,1)\}</math>. The basis vectors are not orthogonal to each other. Then, <math>\mathbf{e}^1</math> and <math>\mathbf{e}^2</math> are [[one-form]]s (functions that map a vector to a scalar) such that <math>\mathbf{e}^1(\mathbf{e}_1)=1</math>, <math>\mathbf{e}^1(\mathbf{e}_2)=0</math>, <math>\mathbf{e}^2(\mathbf{e}_1)=0</math>, and <math>\mathbf{e}^2(\mathbf{e}_2)=1</math>. (Note: The superscript here is the index, not an exponent.) This system of equations can be expressed using matrix notation as :<math> \begin{bmatrix} e^{11} & e^{12} \\ e^{21} & e^{22} \end{bmatrix} \begin{bmatrix} e_{11} & e_{21} \\ e_{12} & e_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. </math> Solving for the unknown values in the first matrix shows the dual basis to be <math>\{\mathbf{e}^1=(2,0),\mathbf{e}^2=(-1,1)\}</math>. Because <math>\mathbf{e}^1</math> and <math>\mathbf{e}^2</math> are functionals, they can be rewritten as <math>\mathbf{e}^1(x,y)=2x</math> and <math>\mathbf{e}^2(x,y)=-x+y</math>. In general, when <math>V</math> is <math>\R^n</math>, if <math>E=[\mathbf{e}_1|\cdots|\mathbf{e}_n]</math> is a matrix whose columns are the basis vectors and <math>\hat{E}=[\mathbf{e}^1|\cdots|\mathbf{e}^n]</math> is a matrix whose columns are the dual basis vectors, then :<math>\hat{E}^\textrm{T}\cdot E = I_n,</math> where <math>I_n</math> is the [[identity matrix]] of order <math>n</math>. The biorthogonality property of these two basis sets allows any point <math>\mathbf{x}\in V</math> to be represented as :<math>\mathbf{x} = \sum_i \langle\mathbf{x},\mathbf{e}^i \rangle \mathbf{e}_i = \sum_i \langle \mathbf{x}, \mathbf{e}_i \rangle \mathbf{e}^i,</math> even when the basis vectors are not orthogonal to each other. Strictly speaking, the above statement only makes sense once the inner product <math>\langle \cdot, \cdot \rangle</math> and the corresponding duality pairing are introduced, as described below in ''{{section link||Bilinear_products_and_dual_spaces}}''. In particular, <math>\R^n</math> can be interpreted as the space of columns of <math>n</math> [[real number]]s, its dual space is typically written as the space of ''rows'' of <math>n</math> real numbers. Such a row acts on <math>\R^n</math> as a linear functional by ordinary [[matrix multiplication]]. This is because a functional maps every <math>n</math>-vector <math>x</math> into a real number <math>y</math>. Then, seeing this functional as a matrix <math>M</math>, and <math>x</math> as an <math>n\times 1</math> matrix, and <math>y</math> a <math>1\times 1</math> matrix (trivially, a real number) respectively, if <math>Mx=y</math> then, by dimension reasons, <math>M</math> must be a <math>1\times n</math> matrix; that is, <math>M</math> must be a row vector. If <math>V</math> consists of the space of geometrical [[Vector (geometric)|vector]]s in the plane, then the [[level set|level curves]] of an element of <math>V^*</math> form a family of parallel lines in <math>V</math>, because the range is 1-dimensional, so that every point in the range is a multiple of any one nonzero element. So an element of <math>V^*</math> can be intuitively thought of as a particular family of parallel lines covering the plane. To compute the value of a functional on a given vector, it suffices to determine which of the lines the vector lies on. Informally, this "counts" how many lines the vector crosses. More generally, if <math>V</math> is a vector space of any dimension, then the [[level sets]] of a linear functional in <math>V^*</math> are parallel hyperplanes in <math>V</math>, and the action of a linear functional on a vector can be visualized in terms of these hyperplanes.<ref>{{harvnb|Misner|Thorne|Wheeler|1973|loc=Β§2.5}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Dual space
(section)
Add topic