Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Double pendulum
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Lagrangian=== The [[Lagrangian mechanics|Lagrangian]] is given by <math display="block">\begin{align} L &= \text{kinetic energy} - \text{potential energy} \\ &= \tfrac{1}{2} m \left ( v_1^2 + v_2^2 \right ) + \tfrac{1}{2} I \left ( \dot\theta_1^2 + \dot\theta_2^2 \right ) - m g \left ( y_1 + y_2 \right ) \\ &= \tfrac{1}{2} m \left ( \dot x_1^2 + \dot y_1^2 + \dot x_2^2 + \dot y_2^2 \right ) + \tfrac{1}{2} I \left ( \dot\theta_1^2 + \dot\theta_2^2 \right ) - m g \left ( y_1 + y_2 \right ) \end{align}</math> The first term is the ''linear'' [[kinetic energy]] of the [[center of mass]] of the bodies and the second term is the ''rotational'' kinetic energy around the center of mass of each rod. The last term is the [[potential energy]] of the bodies in a uniform gravitational field. The [[Newton's notation|dot-notation]] indicates the [[time derivative]] of the variable in question. Using the values of <math>x_1</math> and <math>y_1</math> defined above, we have <math display="block"> \begin{align} \dot x_1 &= \dot \theta_1 \left(\tfrac{1}{2}\ell \cos \theta_1 \right) \\[1ex] \dot y_1 &= \dot \theta_1 \left(\tfrac{1}{2} \ell \sin \theta_1 \right) \end{align} </math> which leads to <math display="block"> v_1^2 = \dot x_1^2 + \dot y_1^2 = \tfrac{1}{4} \dot \theta_1^2 \ell^2 \left(\cos^2 \theta_1 + \sin^2 \theta_1 \right) = \tfrac{1}{4} \ell^2 \dot \theta_1^2 . </math> Similarly, for <math>x_2</math> and <math>y_2</math> we have <math display="block"> \begin{align} \dot x_2 &= \ell \left(\dot \theta_1 \cos \theta_1 + \tfrac{1}{2} \dot \theta_2 \cos \theta_2 \right) \\ \dot y_2 &= \ell \left(\dot \theta_1 \sin \theta_1 + \tfrac{1}{2} \dot \theta_2 \sin \theta_2 \right) \end{align} </math> and therefore <math display="block"> \begin{align} v_2^2 &= \dot x_2^2 + \dot y_2^2 \\[1ex] &= \ell^2 \left( \dot \theta_1^2 \cos^2 \theta_1 + \dot \theta_1^2 \sin^2 \theta_1 + \tfrac{1}{4} \dot \theta_2^2 \cos^2 \theta_2 + \tfrac{1}{4} \dot \theta_2^2 \sin^2 \theta_2 + \dot \theta_1 \dot \theta_2 \cos \theta_1 \cos \theta_2 + \dot \theta_1 \dot \theta_2 \sin \theta_1 \sin \theta_2 \right) \\[1ex] &= \ell^2 \left( \dot \theta_1^2 + \tfrac{1}{4} \dot \theta_2^2 + \dot \theta_1 \dot \theta_2 \cos \left(\theta_1 - \theta_2 \right) \right). \end{align} </math> Substituting the coordinates above into the definition of the Lagrangian, and rearranging the equation, gives <math display="block"> \begin{align} L &= \tfrac{1}{2} m \ell^2 \left( \dot \theta_1^2 + \tfrac{1}{4} \dot \theta_1^2 + \tfrac{1}{4} \dot \theta_2^2 + \dot \theta_1 \dot \theta_2 \cos \left(\theta_1 - \theta_2 \right) \right) + \tfrac{1}{24} m \ell^2 \left( \dot \theta_1^2 + \dot \theta_2^2 \right) - m g \left(y_1 + y_2 \right) \\[1ex] &= \tfrac{1}{6} m \ell^2 \left ( \dot \theta_2^2 + 4 \dot \theta_1^2 + 3 {\dot \theta_1} {\dot \theta_2} \cos (\theta_1-\theta_2) \right) + \tfrac{1}{2} m g \ell \left ( 3 \cos \theta_1 + \cos \theta_2 \right ). \end{align} </math> The equations of motion can now be derived using the [[Euler–Lagrange equation]]s, which are given by <math display="block"> \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}_i} - \frac{\partial L}{\partial \theta_i} = 0, \quad i = 1,2. </math> We begin with the equation of motion for <math>\theta_1</math>. The derivatives of the Lagrangian are given by <math display="block"> \frac{\partial L}{\partial \theta_1} = -\tfrac{1}{2} m \ell^2 \dot{\theta}_1 \dot{\theta}_2 \sin(\theta_1 - \theta_2) - \tfrac{3}{2} mg\ell \sin\theta_1 </math> and <math display="block"> \frac{\partial L}{\partial \dot{\theta}_1} = \tfrac{4}{3} m\ell^2 \dot{\theta}_1 + \tfrac{1}{2} m\ell^2 \dot{\theta}_2 \cos(\theta_1-\theta_2). </math> Thus <math display="block"> \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}_1} = \tfrac{4}{3} m\ell^2 \ddot{\theta}_1 + \tfrac{1}{2} m\ell^2 \ddot{\theta}_2 \cos(\theta_1-\theta_2) - \tfrac{1}{2} m\ell^2 \dot{\theta}_2(\dot{\theta}_1 - \dot{\theta}_2) \sin(\theta_1 - \theta_2). </math> Combining these results and simplifying yields the first equation of motion, <math display="block"> \tfrac{4}{3} \ell \ddot{\theta}_1 + \tfrac{1}{2} \ell \ddot{\theta}_2 \cos(\theta_1 - \theta_2) + \tfrac{1}{2} \ell \dot{\theta}_2^2 \sin(\theta_1-\theta_2) + \tfrac{3}{2} g \sin\theta_1 = 0. </math> Similarly, the derivatives of the Lagrangian with respect to <math>\theta_2</math> and <math>\dot{\theta}_2</math> are given by <math display="block"> \frac{\partial L}{\partial \theta_2} = \tfrac{1}{2} m \ell^2 \dot{\theta}_1 \dot{\theta}_2 \sin(\theta_1 - \theta_2) - \tfrac{1}{2} mg\ell \sin\theta_2 </math> and <math display="block"> \frac{\partial L}{\partial \dot{\theta}_2} = \tfrac{1}{3} m\ell^2 \dot{\theta}_2 + \tfrac{1}{2} m\ell^2 \dot{\theta}_1 \cos(\theta_1-\theta_2). </math> Thus <math display="block"> \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}_2} = \tfrac{1}{3} m\ell^2 \ddot{\theta}_2 + \tfrac{1}{2} m\ell^2 \ddot{\theta}_1 \cos(\theta_1-\theta_2) - \tfrac{1}{2} m\ell^2 \dot{\theta}_1(\dot{\theta}_1 - \dot{\theta}_2) \sin(\theta_1 - \theta_2). </math> Plugging these results into the Euler-Lagrange equation and simplifying yields the second equation of motion, <math display="block"> \tfrac{1}{3} \ell \ddot{\theta}_2 + \tfrac{1}{2} \ell \ddot{\theta}_1 \cos(\theta_1 - \theta_2) - \tfrac{1}{2} \ell \dot{\theta}_1^2 \sin(\theta_1-\theta_2) + \tfrac{1}{2} g \sin\theta_2 = 0. </math> No [[closed form expression|closed form]] solutions for <math>\theta_1</math> and <math>\theta_2</math> as functions of time are known, therefore the system can only be solved [[numerical integration|numerically]], using the [[Runge–Kutta methods|Runge Kutta method]] or [[numerical methods for ordinary differential equations|similar techniques]]. [[File:Double-pendulum.png|thumb|Parametric plot for the time evolution of the angles of a double pendulum. Note that the graph resembles [[Brownian motion]].]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Double pendulum
(section)
Add topic