Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cryopump
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Operation== Cryopumps are commonly cooled by compressed helium, though they may also use [[dry ice]], [[liquid nitrogen]], or stand-alone versions may include a built-in [[cryocooler]]. Baffles are often attached to the cold head to expand the surface area available for condensation, but these also increase the radiative heat uptake of the cryopump. Over time, the surface eventually saturates with condensate and thus the pumping speed gradually drops to zero. It will hold the trapped gases as long as it remains cold, but it will not condense fresh gases from leaks or backstreaming until it is regenerated. Saturation happens very quickly in low vacuums, so cryopumps are usually only used in high or ultrahigh vacuum systems. The cryopump provides fast, clean pumping of all gases in the 10<sup>−3</sup> to 10<sup>−9</sup> [[Torr]] range. The cryopump operates on the principle that gases can be condensed and held at extremely low vapor pressures, achieving high speeds and throughputs. The cold head consists of a two-stage cold head cylinder (part of the vacuum vessel) and a drive unit displacer assembly. These together produce closed-cycle refrigeration at temperatures that range from 60 to 80K for the first-stage cold station to 10 to 20K for the second-stage cold station, typically. Some cryopumps have multiple stages at various low temperatures, with the outer stages shielding the coldest inner stages. The outer stages condense high boiling point gases such as water and oil, thus saving the surface area and refrigeration capacity of the inner stages for lower boiling point gases such as nitrogen. As cooling temperatures decrease when using dry ice, liquid nitrogen, then compressed helium, lower molecular-weight gases can be trapped. Trapping nitrogen, helium, and hydrogen requires extremely low temperatures (~10K) and large surface area as described below. Even at this temperature, the lighter gases helium and hydrogen have very low trapping efficiency and are the predominant molecules in ultra-high vacuum systems. Cryopumps are often combined with [[sorption pump]]s by coating the cold head with highly adsorbing materials such as [[activated charcoal]] or a [[zeolite]]. As the [[sorbent]] saturates, the effectiveness of a sorption pump decreases, but can be recharged by heating the zeolite material (preferably under conditions of low pressure) to [[outgassing|outgas]] it. The breakdown temperature of the zeolite material's porous structure may limit the maximum temperature that it may be heated to for regeneration. Sorption pumps are a type of cryopump that is often used as roughing pumps to reduce pressures from the range of atmospheric to on the order of 0.1 [[pascal (unit)|Pa]] (10<sup>−3</sup> Torr), while lower pressures are achieved using a finishing pump (see [[vacuum]]). ===Regeneration=== Regeneration of a cryopump is the process of evaporating the trapped gases. During a regeneration cycle, the cryopump is warmed to room temperature or higher, allowing trapped gases to change from a solid state to a gaseous state and thereby be released from the cryopump through a pressure relief valve into the atmosphere. Most production equipment utilizing a cryopump have a means to isolate the cryopump from the vacuum chamber so regeneration takes place without exposing the vacuum system to released gasses such as water vapor. Water vapor is the hardest natural element to remove from vacuum chamber walls upon exposure to the atmosphere due to monolayer formation and hydrogen bonding. Adding heat to the dry nitrogen purge-gas will speed the warm-up and reduce the regeneration time. When regeneration is complete, the cryopump will be roughed to 50μm (50 milliTorr or {{not a typo|μmHg}}), isolated, and the rate-of-rise (ROR) will be monitored to test for complete regeneration. If the ROR exceeds 10μm/min the cryopump will require additional purge time.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cryopump
(section)
Add topic