Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Consistency
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== First-order logic == ===Notation=== In the following context of [[mathematical logic]], the [[turnstile symbol]] <math>\vdash</math> means "provable from". That is, <math>a\vdash b</math> reads: ''b'' is provable from ''a'' (in some specified formal system). ===Definition=== *A set of [[Well-formed formula|formulas]] <math>\Phi</math> in first-order logic is '''consistent''' (written <math>\operatorname{Con} \Phi</math>) if there is no formula <math>\varphi</math> such that <math>\Phi \vdash \varphi</math> and <math>\Phi \vdash \lnot\varphi</math>. Otherwise <math>\Phi</math> is '''inconsistent''' (written <math>\operatorname{Inc}\Phi</math>). *<math>\Phi</math> is said to be '''simply consistent''' if for no formula <math>\varphi</math> of <math>\Phi</math>, both <math>\varphi</math> and the [[negation]] of <math>\varphi</math> are theorems of <math>\Phi</math>.{{clarify|reason=Assuming that 'provable from' and 'theorem of' is equivalent, there seems to be no difference between 'consistent' and 'simply consistent'. If that is true, both definitions should be joined into a single one. If not, the difference should be made clear.|date=September 2018}} *<math>\Phi</math> is said to be '''absolutely consistent''' or '''Post consistent''' if at least one formula in the language of <math>\Phi</math> is not a theorem of <math>\Phi</math>. *<math>\Phi</math> is said to be '''maximally consistent''' if <math>\Phi</math> is consistent and for every formula <math>\varphi</math>, <math>\operatorname{Con} (\Phi \cup \{\varphi\})</math> implies <math>\varphi \in \Phi</math>. *<math>\Phi</math> is said to '''contain witnesses''' if for every formula of the form <math>\exists x \,\varphi</math> there exists a [[Term (logic)|term]] <math>t</math> such that <math>(\exists x \, \varphi \to \varphi {t \over x}) \in \Phi</math>, where <math>\varphi {t \over x}</math> denotes the [[substitution (logic)|substitution]] of each <math>x</math> in <math>\varphi</math> by a <math>t</math>; see also [[First-order logic]].{{citation needed|date=September 2018}} ===Basic results=== # The following are equivalent: ## <math>\operatorname{Inc}\Phi</math> ## For all <math>\varphi,\; \Phi \vdash \varphi.</math> # Every satisfiable set of formulas is consistent, where a set of formulas <math>\Phi</math> is satisfiable if and only if there exists a model <math>\mathfrak{I}</math> such that <math>\mathfrak{I} \vDash \Phi </math>. # For all <math>\Phi</math> and <math>\varphi</math>: ## if not <math> \Phi \vdash \varphi</math>, then <math>\operatorname{Con}\left( \Phi \cup \{\lnot\varphi\}\right)</math>; ## if <math>\operatorname{Con}\Phi</math> and <math>\Phi \vdash \varphi</math>, then <math> \operatorname{Con} \left(\Phi \cup \{\varphi\}\right)</math>; ## if <math>\operatorname{Con}\Phi</math>, then <math>\operatorname{Con}\left( \Phi \cup \{\varphi\}\right)</math> or <math>\operatorname{Con}\left( \Phi \cup \{\lnot \varphi\}\right)</math>. # Let <math>\Phi</math> be a maximally consistent set of formulas and suppose it contains [[Witness (mathematics)|witnesses]]. For all <math>\varphi</math> and <math> \psi </math>: ## if <math> \Phi \vdash \varphi</math>, then <math>\varphi \in \Phi</math>, ## either <math>\varphi \in \Phi</math> or <math>\lnot \varphi \in \Phi</math>, ## <math>(\varphi \lor \psi) \in \Phi</math> if and only if <math>\varphi \in \Phi</math> or <math>\psi \in \Phi</math>, ## if <math>(\varphi\to\psi) \in \Phi</math> and <math>\varphi \in \Phi </math>, then <math>\psi \in \Phi</math>, ## <math>\exists x \, \varphi \in \Phi</math> if and only if there is a term <math>t</math> such that <math>\varphi{t \over x}\in\Phi</math>.{{citation needed|date=September 2018}} ===Henkin's theorem=== Let <math>S</math> be a [[signature (logic)|set of symbols]]. Let <math>\Phi</math> be a maximally consistent set of <math>S</math>-formulas containing [[Witness (mathematics)#Henkin witnesses|witnesses]]. Define an [[equivalence relation]] <math>\sim</math> on the set of <math>S</math>-terms by <math>t_0 \sim t_1</math> if <math>\; t_0 \equiv t_1 \in \Phi</math>, where <math>\equiv</math> denotes [[First-order logic#Equality and its axioms|equality]]. Let <math>\overline t</math> denote the [[equivalence class]] of terms containing <math>t </math>; and let <math>T_\Phi := \{ \; \overline t \mid t \in T^S \} </math> where <math>T^S </math> is the set of terms based on the set of symbols <math>S</math>. Define the <math>S</math>-[[Structure (mathematical logic)|structure]] <math>\mathfrak T_\Phi </math> over <math> T_\Phi </math>, also called the '''term-structure''' corresponding to <math>\Phi</math>, by: # for each <math>n</math>-ary relation symbol <math>R \in S</math>, define <math>R^{\mathfrak T_\Phi} \overline {t_0} \ldots \overline {t_{n-1}}</math> if <math>\; R t_0 \ldots t_{n-1} \in \Phi;</math><ref>This definition is independent of the choice of <math>t_i</math> due to the substitutivity properties of <math>\equiv</math> and the maximal consistency of <math>\Phi</math>.</ref> # for each <math>n</math>-ary function symbol <math>f \in S</math>, define <math>f^{\mathfrak T_\Phi} (\overline {t_0} \ldots \overline {t_{n-1}}) := \overline {f t_0 \ldots t_{n-1}};</math> # for each constant symbol <math>c \in S</math>, define <math>c^{\mathfrak T_\Phi}:= \overline c.</math> Define a variable assignment <math>\beta_\Phi</math> by <math>\beta_\Phi (x) := \bar x</math> for each variable <math>x</math>. Let <math>\mathfrak I_\Phi := (\mathfrak T_\Phi,\beta_\Phi)</math> be the '''term [[Interpretation (logic)#First-order logic|interpretation]]''' associated with <math>\Phi</math>. Then for each <math>S</math>-formula <math>\varphi</math>: {{center|1= <math>\mathfrak I_\Phi \vDash \varphi</math> if and only if <math> \; \varphi \in \Phi.</math>{{citation needed|date=September 2018}} }} ===Sketch of proof=== There are several things to verify. First, that <math>\sim</math> is in fact an equivalence relation. Then, it needs to be verified that (1), (2), and (3) are well defined. This falls out of the fact that <math>\sim</math> is an equivalence relation and also requires a proof that (1) and (2) are independent of the choice of <math> t_0, \ldots ,t_{n-1} </math> class representatives. Finally, <math> \mathfrak I_\Phi \vDash \varphi </math> can be verified by induction on formulas.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Consistency
(section)
Add topic