Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Combination
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Example of counting combinations === As a specific example, one can compute the number of five-card hands possible from a standard fifty-two card deck as:<ref>{{harvnb|Mazur|2010|loc=p. 21}}</ref> <math display="block"> \binom{52}{5} = \frac{52\times51\times50\times49\times48}{5\times4\times3\times2\times1} = \frac{311{,}875{,}200}{120} = 2{,}598{,}960.</math> Alternatively one may use the formula in terms of factorials and cancel the factors in the numerator against parts of the factors in the denominator, after which only multiplication of the remaining factors is required: <math display="block">\begin{alignat}{2} \binom{52}{5} &= \frac{52!}{5!47!} \\[5pt] &= \frac{52\times51\times50\times49\times48\times\cancel{47!}}{5\times4\times3\times2\times\cancel{1}\times\cancel{47!}} \\[5pt] &= \frac{52\times51\times50\times49\times48}{5\times4\times3\times2} \\[5pt] &= \frac{(26\times\cancel{2})\times(17\times\cancel{3})\times(10\times\cancel{5})\times49\times(12\times\cancel{4})}{\cancel{5}\times\cancel{4}\times\cancel{3}\times\cancel{2}} \\[5pt] &= {26\times17\times10\times49\times12} \\[5pt] &= 2{,}598{,}960. \end{alignat}</math> Another alternative computation, equivalent to the first, is based on writing <math display="block"> \binom{n}{k} = \frac { ( n - 0 ) }1 \times \frac { ( n - 1 ) }2 \times \frac { ( n - 2 ) }3 \times \cdots \times \frac { ( n - (k - 1) ) }k,</math> which gives <math display="block"> \binom{52}{5} = \frac{52}1 \times \frac{51}2 \times \frac{50}3 \times \frac{49}4 \times \frac{48}5 = 2{,}598{,}960.</math> When evaluated in the following order, {{math|52 ÷ 1 × 51 ÷ 2 × 50 ÷ 3 × 49 ÷ 4 × 48 ÷ 5}}, this can be computed using only integer arithmetic. The reason is that when each division occurs, the intermediate result that is produced is itself a binomial coefficient, so no remainders ever occur. Using the symmetric formula in terms of factorials without performing simplifications gives a rather extensive calculation: <math display="block"> \begin{align} \binom{52}{5} &= \frac{n!}{k!(n-k)!} = \frac{52!}{5!(52-5)!} = \frac{52!}{5!47!} \\[6pt] &= \tfrac{80,658,175,170,943,878,571,660,636,856,403,766,975,289,505,440,883,277,824,000,000,000,000}{120\times258,623,241,511,168,180,642,964,355,153,611,979,969,197,632,389,120,000,000,000} \\[6pt] &= 2{,}598{,}960. \end{align}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Combination
(section)
Add topic