Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Coenzyme A
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Biosynthesis== Coenzyme A is naturally synthesized from [[Pantothenic acid|pantothenate]] (vitamin B<sub>5</sub>), which is found in food such as meat, vegetables, cereal grains, legumes, eggs, and milk.<ref>{{Cite web|url=http://www.umm.edu/health/medical/altmed/supplement/vitamin-b5-pantothenic-acid|title=Vitamin B<sub>5</sub> (Pantothenic acid)|website=University of Maryland Medical Center|language=en|access-date=2017-11-08|archive-date=2017-10-18|archive-url=https://web.archive.org/web/20171018192121/http://www.umm.edu/health/medical/altmed/supplement/vitamin-b5-pantothenic-acid|url-status=dead}}</ref> In humans and most living organisms, pantothenate is an essential vitamin that has a variety of functions.<ref>{{Cite web|url=https://medlineplus.gov/druginfo/natural/853.html|title=Pantothenic Acid (Vitamin B<sub>5</sub>): MedlinePlus Supplements|website=medlineplus.gov|language=en|access-date=2017-12-10|archive-date=2017-12-22|archive-url=https://web.archive.org/web/20171222155558/https://medlineplus.gov/druginfo/natural/853.html|url-status=dead}}</ref> In some plants and bacteria, including ''[[Escherichia coli]]'', pantothenate can be synthesised ''de novo'' and is therefore not considered essential. These bacteria synthesize pantothenate from the amino acid aspartate and a metabolite in valine biosynthesis.<ref name=":3">{{cite journal | vauthors = Leonardi R, Jackowski S | title = Biosynthesis of Pantothenic Acid and Coenzyme A | journal = EcoSal Plus | volume = 2 | issue = 2 | date = April 2007 | pmid = 26443589 | pmc = 4950986 | doi = 10.1128/ecosalplus.3.6.3.4 }}</ref> In all living organisms, coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine<ref name=":4">{{cite journal | vauthors = Leonardi R, Zhang YM, Rock CO, Jackowski S | title = Coenzyme A: back in action | journal = Progress in Lipid Research | volume = 44 | issue = 2–3 | pages = 125–153 | year = 2005 | pmid = 15893380 | doi = 10.1016/j.plipres.2005.04.001 }}</ref> (see figure): [[File:CoA_Biosynthetic_Pathway.png|thumb|Details of the biosynthetic pathway of CoA synthesis from pantothenic acid.]] # [[Pantothenate]] (vitamin B<sub>5</sub>) is phosphorylated to 4′-phosphopantothenate by the enzyme [[pantothenate kinase]] (PanK; CoaA; CoaX). This is the committed step in CoA biosynthesis and requires ATP.<ref name=":3" /> # A [[cysteine]] is added to 4′-phosphopantothenate by the enzyme [[phosphopantothenoylcysteine synthetase]] (PPCS; CoaB) to form 4'-phospho-N-pantothenoylcysteine (PPC). This step is coupled with ATP hydrolysis.<ref name=":3" /> # PPC is decarboxylated to [[4'-phosphopantetheine|4′-phosphopantetheine]] by [[phosphopantothenoylcysteine decarboxylase]] (PPC-DC; CoaC) # 4′-phosphopantetheine is adenylated (or more properly, [[Adenylation|AMPylated]]) to form dephospho-CoA by the enzyme [[Pantetheine-phosphate adenylyltransferase|phosphopantetheine adenylyl transferase]] (COASY; PPAT; CoaD) # Finally, dephospho-CoA is phosphorylated to coenzyme A by the enzyme [[dephospho-CoA kinase|dephosphocoenzyme A kinase]] (COASY, DPCK; CoaE). This final step requires ATP.<ref name=":3" /> Enzyme nomenclature abbreviations in parentheses represent mammalian, other eukaryotic, and prokaryotic enzymes respectively. In mammals steps 4 and 5 are catalyzed by a bifunctional enzyme called [[COASY]].<ref name="Evers">{{cite journal | vauthors = Evers C, Seitz A, Assmann B, Opladen T, Karch S, Hinderhofer K, Granzow M, Paramasivam N, Eils R, Diessl N, Bartram CR, Moog U | display-authors = 6 | title = Diagnosis of CoPAN by whole exome sequencing: Waking up a sleeping tiger's eye | journal = American Journal of Medical Genetics. Part A | volume = 173 | issue = 7 | pages = 1878–1886 | date = July 2017 | pmid = 28489334 | doi = 10.1002/ajmg.a.38252 | s2cid = 27153945 }}</ref> This pathway is regulated by product inhibition. CoA is a competitive inhibitor for Pantothenate Kinase, which normally binds ATP.<ref name=":3" /> Coenzyme A, three ADP, one monophosphate, and one diphosphate are harvested from biosynthesis.<ref name=":4" /> Coenzyme A can be synthesized through alternate routes when intracellular coenzyme A level are reduced and the ''de novo'' pathway is impaired.<ref>{{cite journal | vauthors = de Villiers M, Strauss E | title = Metabolism: Jump-starting CoA biosynthesis | journal = Nature Chemical Biology | volume = 11 | issue = 10 | pages = 757–758 | date = October 2015 | pmid = 26379022 | doi = 10.1038/nchembio.1912 }}</ref> In these pathways, coenzyme A needs to be provided from an external source, such as food, in order to produce [[4'-phosphopantetheine|4′-phosphopantetheine]]. Ectonucleotide pyrophosphates (ENPP) degrade coenzyme A to 4′-phosphopantetheine, a stable molecule in organisms. [[Acyl carrier protein|Acyl carrier proteins (ACP)]] (such as ACP synthase and ACP degradation) are also used to produce 4′-phosphopantetheine. This pathway allows for 4′-phosphopantetheine to be replenished in the cell and allows for the conversion to coenzyme A through enzymes, PPAT and PPCK.<ref>{{cite journal | vauthors = Sibon OC, Strauss E | title = Coenzyme A: to make it or uptake it? | journal = Nature Reviews. Molecular Cell Biology | volume = 17 | issue = 10 | pages = 605–606 | date = October 2016 | pmid = 27552973 | doi = 10.1038/nrm.2016.110 | s2cid = 10344527 }}</ref> A 2024 article<ref>{{cite journal |last1=Fairchild |first1=Jasper |last2=Islam |first2=Saidul |last3=Singh |first3=Jyoti |last4=Bučar |first4=Dejan-Krešimir |last5=Powner |first5=Matthew W. | title = Prebiotically plausible chemoselective pantetheine synthesis in water | journal = Science | volume = 383 | issue = 6685 | pages = 911-918 | date = 22 February 2024 | doi = 10.1126/science.adk4432 }}</ref> detailed a plausible chemical synthesis mechanism for the pantetheine component (the main functional part) of coenzyme A in a primordial [[Abiogenesis|prebiotic]] world. ===Commercial production=== Coenzyme A is produced commercially via extraction from yeast, however this is an inefficient process (yields approximately 25 mg/kg) resulting in an expensive product. Various ways of producing CoA synthetically, or semi-synthetically have been investigated, although none are currently operating at an industrial scale.<ref>{{cite journal | vauthors = Mouterde LM, Stewart JD |title=Isolation and Synthesis of One of the Most Central Cofactors in Metabolism: Coenzyme A |journal=Organic Process Research & Development |volume=23 |pages=19–30 |date=19 December 2018 |doi=10.1021/acs.oprd.8b00348|s2cid=92802641 |url=https://hal.archives-ouvertes.fr/hal-02876007/file/Review%20final%205.0.pdf }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Coenzyme A
(section)
Add topic