Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Catalan's conjecture
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Pillai's conjecture== {{unsolved|mathematics|Does each positive integer occur only finitely many times as a difference of perfect powers?}} '''Pillai's conjecture''' concerns a general difference of perfect powers {{OEIS|id=A001597}}: it is an [[open problem]] initially proposed by [[S. S. Pillai]], who conjectured that the gaps in the sequence of perfect powers tend to infinity. This is equivalent to saying that each positive integer occurs only finitely many times as a difference of perfect powers: more generally, in 1931 Pillai conjectured that for fixed positive integers ''A'', ''B'', ''C'' the equation <math>Ax^n - By^m = C</math> has only finitely many solutions (''x'', ''y'', ''m'', ''n'') with (''m'', ''n'') β (2, 2). Pillai proved that for fixed ''A'', ''B'', ''x'', ''y'', and for any Ξ» less than 1, we have <math>|Ax^n - By^m| \gg x^{\lambda n}</math> uniformly in ''m'' and ''n''.<ref name=rnt>{{citation | pages=[https://archive.org/details/rationalnumberth00nark/page/n261 253]β254 | title=Rational Number Theory in the 20th Century: From PNT to FLT | url=https://archive.org/details/rationalnumberth00nark | url-access=limited | series=Springer Monographs in Mathematics | first=Wladyslaw | last=Narkiewicz | publisher=[[Springer-Verlag]] | year=2011 | isbn=978-0-857-29531-6}}</ref> The general conjecture would follow from the [[ABC conjecture]].<ref name=rnt/><ref>{{citation | last=Schmidt | first=Wolfgang M. | author-link=Wolfgang M. Schmidt | title=Diophantine approximations and Diophantine equations | series=Lecture Notes in Mathematics | volume=1467 | publisher=[[Springer-Verlag]] | year=1996 | edition=2nd | isbn=3-540-54058-X | zbl=0754.11020 | page=207}}</ref> Pillai's conjecture means that for every natural number ''n'', there are only finitely many pairs of perfect powers with difference ''n''. The list below shows, for ''n'' β€ 64, all solutions for perfect powers less than 10<sup>18</sup>, such that the exponent of both powers is greater than 1. The number of such solutions for each ''n'' is listed at {{oeis|id=A076427}}. See also {{oeis|id=A103953}} for the smallest solution (> 0). {|class="wikitable" style="border:none;text-align:right;" ! ''n'' ! solution<br />count ! numbers ''k'' such that ''k'' and ''k'' + ''n''<br />are both perfect powers |rowspan="33" style="padding:2px;background:white;border:none;"| ! ''n'' ! solution<br />count ! numbers ''k'' such that ''k'' and ''k'' + ''n''<br />are both perfect powers |- | 1 || 1 ||style="text-align:left"| 8 | 33 || 2 ||style="text-align:left"| 16, 256 |- | 2 || 1 ||style="text-align:left"| 25 | 34 || 0 ||style="text-align:left"| ''none'' |- | 3 || 2 ||style="text-align:left"| 1, 125 | 35 || 3 ||style="text-align:left"| 1, 289, 1296 |- | 4 || 3 ||style="text-align:left"| 4, 32, 121 | 36 || 2 ||style="text-align:left"| 64, 1728 |- | 5 || 2 ||style="text-align:left"| 4, 27 | 37 || 3 ||style="text-align:left"| 27, 324, {{val|14348907}} |- | 6 || 0 ||style="text-align:left"| ''none'' | 38 || 1 ||style="text-align:left"| 1331 |- | 7 || 5 ||style="text-align:left"| 1, 9, 25, 121, {{val|32761}} | 39 || 4 ||style="text-align:left"| 25, 361, 961, {{val|10609}} |- | 8 || 3 ||style="text-align:left"| 1, 8, {{val|97336}} | 40 || 4 ||style="text-align:left"| 9, 81, 216, 2704 |- | 9 || 4 ||style="text-align:left"| 16, 27, 216, {{val|64000}} | 41 || 3 ||style="text-align:left"| 8, 128, 400 |- | 10 || 1 ||style="text-align:left"| 2187 | 42 || 0 ||style="text-align:left"| ''none'' |- | 11 || 4 ||style="text-align:left"| 16, 25, 3125, 3364 | 43 || 1 ||style="text-align:left"| 441 |- | 12 || 2 ||style="text-align:left"| 4, 2197 | 44 || 3 ||style="text-align:left"| 81, 100, 125 |- | 13 || 3 ||style="text-align:left"| 36, 243, 4900 | 45 || 4 ||style="text-align:left"| 4, 36, 484, 9216 |- | 14 || 0 ||style="text-align:left"| ''none'' | 46 || 1 ||style="text-align:left"| 243 |- | 15 || 3 ||style="text-align:left"| 1, 49, {{val|1295029}} | 47 || 6 ||style="text-align:left"| 81, 169, 196, 529, 1681, {{val|250000}} |- | 16 || 3 ||style="text-align:left"| 9, 16, 128 | 48 || 4 ||style="text-align:left"| 1, 16, 121, 21904 |- | 17 || 7 ||style="text-align:left"| 8, 32, 64, 512, {{val|79507}}, {{val|140608}}, {{val|143384152904}} | 49 || 3 ||style="text-align:left"| 32, 576, {{val|274576}} |- | 18 || 3 ||style="text-align:left"| 9, 225, 343 | 50 || 0 ||style="text-align:left"| ''none'' |- | 19 || 5 ||style="text-align:left"| 8, 81, 125, 324, {{val|503284356}} | 51 || 2 ||style="text-align:left"| 49, 625 |- | 20 || 2 ||style="text-align:left"| 16, 196 | 52 || 1 ||style="text-align:left"| 144 |- | 21 || 2 ||style="text-align:left"| 4, 100 | 53 || 2 ||style="text-align:left"| 676, {{val|24336}} |- | 22 || 2 ||style="text-align:left"| 27, 2187 | 54 || 2 ||style="text-align:left"| 27, 289 |- | 23 || 4 ||style="text-align:left"| 4, 9, 121, 2025 | 55 || 3 ||style="text-align:left"| 9, 729, {{val|175561}} |- | 24 || 5 ||style="text-align:left"| 1, 8, 25, 1000, {{val|542939080312}} | 56 || 4 ||style="text-align:left"| 8, 25, 169, 5776 |- | 25 || 2 ||style="text-align:left"| 100, 144 | 57 || 3 ||style="text-align:left"| 64, 343, 784 |- | 26 || 3 ||style="text-align:left"| 1, {{val|42849}}, {{val|6436343}} | 58 || 0 ||style="text-align:left"| ''none'' |- | 27 || 3 ||style="text-align:left"| 9, 169, 216 | 59 || 1 ||style="text-align:left"| 841 |- | 28 || 7 ||style="text-align:left"| 4, 8, 36, 100, 484, {{val|50625}}, {{val|131044}} | 60 || 4 ||style="text-align:left"| 4, 196, {{val|2515396}}, {{val|2535525316}} |- | 29 || 1 ||style="text-align:left"| 196 | 61 || 2 ||style="text-align:left"| 64, 900 |- | 30 || 1 ||style="text-align:left"| 6859 | 62 || 0 ||style="text-align:left"| ''none'' |- | 31 || 2 ||style="text-align:left"| 1, 225 | 63 || 4 ||style="text-align:left"| 1, 81, 961, {{val|183250369}} |- | 32 || 4 ||style="text-align:left"| 4, 32, 49, 7744 | 64 || 4 ||style="text-align:left"| 36, 64, 225, 512 |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Catalan's conjecture
(section)
Add topic