Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Bipyramid
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Related and other types of bipyramid == {{multiple image | total_width = 350 | image1 = Concave quadrilateral bipyramid.png |caption1=A concave tetragonal bipyramid | image2 = Asymmetric hexagonal bipyramid.png |caption2= An asymmetric hexagonal bipyramid }} === Concave bipyramids === A ''concave bipyramid'' has a [[concave polygon]] base, and one example is a concave tetragonal bipyramid or an irregular concave octahedron. A bipyramid with an arbitrary polygonal base could be considered a ''right'' bipyramid if the apices are on a line perpendicular to the base passing through the base's [[centroid]]. === Asymmetric bipyramids === An ''asymmetric bipyramid'' has apices which are not mirrored across the base plane; for a right bipyramid this only happens if each apex is a different distance from the base. The [[Dual polyhedron|dual]] of an asymmetric right {{mvar|n}}-gonal bipyramid is an {{mvar|n}}-gonal [[frustum]]. A regular asymmetric right {{mvar|n}}-gonal bipyramid has symmetry group {{math|C<sub>''n''v</sub>}}, of order {{math|2''n''}}. === Scalene triangle bipyramids === [[File:EB1911 Crystallography Fig. 46 Ditetragonal Bipyramid.jpg|thumb|Example: ditetragonal bipyramid ({{math|1=2''n'' = 2×4}})]] An isotoxal right (symmetric) '''di-{{mvar|n}}-gonal bipyramid''' is a right (symmetric) {{math|'''2'''''n''}}-gonal bipyramid with an [[Isotoxal figure|''isotoxal'']] flat polygon base: its {{math|2''n''}} basal vertices are coplanar, but alternate in two [[Radius|radii]]. All its faces are [[Congruence (geometry)|congruent]] [[scalene triangle]]s, and it is [[Isohedral figure|isohedral]]. It can be seen as another type of a right symmetric di-{{mvar|n}}-gonal [[#Scalenohedra|''scalenohedron'']], with an isotoxal flat polygon base. An isotoxal right (symmetric) di-{{mvar|n}}-gonal bipyramid has {{mvar|n}} two-fold rotation axes through opposite basal vertices, {{mvar|n}} reflection planes through opposite apical edges, an {{mvar|n}}-fold rotation axis through apices, a reflection plane through base, and an {{mvar|n}}-fold [[Improper rotation|rotation-reflection]] axis through apices,<ref name=tulane /> representing symmetry group {{math|D<sub>''n''h</sub>, [''n'',2], (*22''n''),}} of order {{math|4''n''}}. (The reflection about the base plane corresponds to the {{math|0°}} rotation-reflection. If {{mvar|n}} is even, then there is an [[inversion symmetry]] about the center, corresponding to the {{math|180°}} rotation-reflection.) Example with {{math|1=2''n'' = 2×3}}: :An isotoxal right (symmetric) ditrigonal bipyramid has three similar vertical planes of symmetry, intersecting in a (vertical) {{math|3}}-fold rotation axis; perpendicular to them is a fourth plane of symmetry (horizontal); at the intersection of the three vertical planes with the horizontal plane are three similar (horizontal) {{math|2}}-fold rotation axes; there is no center of inversion symmetry,{{sfn|Spencer|1911|loc=6. Hexagonal system, ''rhombohedral division'', ditrigonal bipyramidal class, p. 581 (p. 603 on Wikisource)}} but there is a [[center of symmetry]]: the intersection point of the four axes. Example with {{math|1=2''n'' = 2×4}}: :An isotoxal right (symmetric) ditetragonal bipyramid has four vertical planes of symmetry of two kinds, intersecting in a (vertical) {{math|4}}-fold rotation axis; perpendicular to them is a fifth plane of symmetry (horizontal); at the intersection of the four vertical planes with the horizontal plane are four (horizontal) {{math|2}}-fold rotation axes of two kinds, each perpendicular to a plane of symmetry; two vertical planes bisect the angles between two horizontal axes; and there is a centre of inversion symmetry.{{sfn|Spencer|1911|loc=2. Tegragonal system, holosymmetric class, fig. 46, p. 577 (p. 599 on Wikisource)}} Double example: *The bipyramid with isotoxal {{math|2×2}}-gon base vertices {{mvar|U, U', V, V'}} and right symmetric apices {{mvar|A, A'}}<math display=block>\begin{alignat}{5} U &= (1,0,0), & \quad V &= (0,2,0), & \quad A &= (0,0,1), \\ U' &= (-1,0,0), & \quad V' &= (0,-2,0), & \quad A' &= (0,0,-1), \end{alignat}</math> has its faces isosceles. Indeed: **Upper apical edge lengths:<math display=block>\begin{align} \overline{AU} &= \overline{AU'} = \sqrt{2} \,, \\[2pt] \overline{AV} &= \overline{AV'} = \sqrt{5} \,; \end{align}</math> **Base edge lengths: <math display=block> \overline{UV} = \overline{VU'} = \overline{U'V'} = \overline{V'U} = \sqrt{5} \,; </math> **Lower apical edge lengths (equal to upper edge lengths):<math display=block>\begin{align} \overline{A'U} &= \overline{A'U'} = \sqrt{2} \,, \\[2pt] \overline{A'V} &= \overline{A'V'} = \sqrt{5} \,. \end{align}</math> *The bipyramid with same base vertices, but with right symmetric apices <math display=block>\begin{align} A &= (0,0,2), \\ A' &= (0,0,-2), \end{align}</math> also has its faces isosceles. Indeed: **Upper apical edge lengths:<math display=block>\begin{align} \overline{AU} &= \overline{AU'} = \sqrt{5} \,, \\[2pt] \overline{AV} &= \overline{AV'} = 2\sqrt{2} \,; \end{align}</math> **Base edge length (equal to previous example): <math display=block> \overline{UV} = \overline{VU'} = \overline{U'V'} = \overline{V'U} = \sqrt{5}\,; </math> **Lower apical edge lengths (equal to upper edge lengths):<math display=block>\begin{align} \overline{A'U} &= \overline{A'U'} = \sqrt{5}\,, \\[2pt] \overline{A'V} &= \overline{A'V'} = 2\sqrt{2}\,. \end{align}</math> [[File:EB1911 Crystallography Figs. 54 & 55 Orthorhombic Bipyramids.jpg|thumb|Examples of rhombic bipyramids]] In [[crystallography]], isotoxal right (symmetric) didigonal{{efn|The smallest geometric di-{{mvar|n}}-gonal bipyramids have eight faces, and are topologically identical to the regular [[octahedron]]. In this case ({{math|1=2''n'' = 2×2}}):<br>an isotoxal right (symmetric) didigonal bipyramid is called a ''rhombic bipyramid'',<ref name=tulane /><ref name=uwgb /> although all its faces are scalene triangles, because its flat polygon base is a rhombus.}} (8-faced), ditrigonal (12-faced), ditetragonal (16-faced), and dihexagonal (24-faced) bipyramids exist.<ref name=tulane>{{cite web|url=http://www.tulane.edu/~sanelson/eens211/forms_zones_habit.htm|title=Crystal Form, Zones, Crystal Habit|website=Tulane.edu|access-date=16 September 2017}}</ref><ref name=uwgb /> === Scalenohedra === [[File:EB1911 Crystallography Fig. 68.—Scalenohedron.jpg|thumb|Example: ditrigonal scalenohedron ({{math|1=2''n'' = 2×3}})]] A '''scalenohedron''' is similar to a bipyramid; the difference is that the scalenohedra has a zig-zag pattern in the middle edges.{{r|kp}} It has two apices and {{math|2''n''}} basal vertices, {{math|4''n''}} faces, and {{math|6''n''}} edges; it is topologically identical to a {{math|2''n''}}-gonal bipyramid, but its {{math|2''n''}} basal vertices alternate in two rings above and below the center.<ref name=uwgb>{{Cite web|date=2013-09-18|title=The 48 Special Crystal Forms|url=https://www.uwgb.edu/dutchs/symmetry/xlforms.htm|access-date=2020-11-18|archive-url=https://web.archive.org/web/20130918103121/https://www.uwgb.edu/dutchs/symmetry/xlforms.htm|archive-date=18 September 2013}}</ref> All its faces are [[Congruence (geometry)|congruent]] [[scalene triangle]]s, and it is [[Isohedral figure|isohedral]]. It can be seen as another type of a right symmetric di-{{mvar|n}}-gonal bipyramid, with a regular zigzag skew polygon base. A regular right symmetric di-{{mvar|n}}-gonal scalenohedron has {{mvar|n}} two-fold rotation axes through opposite basal mid-edges, {{mvar|n}} reflection planes through opposite apical edges, an {{mvar|n}}-fold rotation axis through apices, and a {{math|'''2'''''n''}}-fold [[Improper rotation|rotation-reflection]] axis through apices (about which {{math|'''1'''''n''}} rotations-reflections globally preserve the solid),<ref name=tulane /> representing symmetry group {{math|1=D<sub>''n''v</sub> = D<sub>''n''d</sub>, [2<sup>+</sup>,2''n''], (2*''n''),}} of order {{math|4''n''}}. (If {{mvar|n}} is odd, then there is an [[inversion symmetry]] about the center, corresponding to the {{math|180°}} rotation-reflection.) Example with {{math|1=2''n'' = 2×3}}: :A regular right symmetric ditrigonal scalenohedron has three similar vertical planes of symmetry inclined to one another at {{math|60°}} and intersecting in a (vertical) {{math|3}}-fold rotation axis, three similar horizontal {{math|2}}-fold rotation axes, each perpendicular to a plane of symmetry, a center of inversion symmetry,{{sfn|Spencer|1911|loc=6. Hexagonal system, ''rhombohedral division'', holosymmetric class, fig. 68, p. 580 (p. 602 on Wikisource)}} and a vertical {{math|'''6'''}}-fold rotation-reflection axis. Example with {{math|1=2''n'' = 2×2}}: :A regular right symmetric didigonal scalenohedron has only one vertical and two horizontal {{math|2}}-fold rotation axes, two vertical planes of symmetry, which bisect the angles between the horizontal pair of axes, and a vertical {{math|'''4'''}}-fold rotation-reflection axis;{{sfn|Spencer|1911|p=2. Tetragonal system, scalenohedral class, fig. 51, p. 577 (p. 599 on Wikisource)}} it has no center of inversion symmetry. [[File:EB1911 Crystallography Figs. 50 & 51.jpg|thumb|Examples of disphenoids and of an {{math|8}}-faced scalenohedron]] For at most two particular values of <math>z_A = |z_{A'}|,</math> the faces of such a '''scaleno'''hedron may be [[Isosceles triangle|'''isosceles''']]. Double example: *The scalenohedron with regular zigzag skew {{math|2×2}}-gon base vertices {{mvar|U, U', V, V'}} and right symmetric apices {{mvar|A, A'}}<math display=block>\begin{alignat}{5} U &= (3,0,2), & \quad V &= (0,3,-2), & \quad A &= (0,0,3), \\ U' &= (-3,0,2), & \quad V' &= (0,-3,-2), & \quad A' &= (0,0,-3), \end{alignat}</math> has its faces isosceles. Indeed: **Upper apical edge lengths:<math display=block>\begin{align} \overline{AU} &= \overline{AU'} = \sqrt{10} \,, \\[2pt] \overline{AV} &= \overline{AV'} = \sqrt{34} \,; \end{align}</math> **Base edge length:<math display=block> \overline{UV} = \overline{VU'} = \overline{U'V'} = \overline{V'U} = \sqrt{34} \,; </math> **Lower apical edge lengths (equal to upper edge lengths swapped):<math display=block>\begin{align} \overline{A'U} &= \overline{A'U'} = \sqrt{34} \,, \\[2pt] \overline{A'V} &= \overline{A'V'} = \sqrt{10} \,. \end{align}</math> *The scalenohedron with same base vertices, but with right symmetric apices<math display=block>\begin{align} A &= (0,0,7), \\ A' &= (0,0,-7), \end{align}</math> also has its faces isosceles. Indeed: **Upper apical edge lengths:<math display=block>\begin{align} \overline{AU} &= \overline{AU'} = \sqrt{34} \,, \\[2pt] \overline{AV} &= \overline{AV'} = 3\sqrt{10} \,; \end{align}</math> **Base edge length (equal to previous example): <math display=block> \overline{UV} = \overline{VU'} = \overline{U'V'} = \overline{V'U} = \sqrt{34} \,; </math> **Lower apical edge lengths (equal to upper edge lengths swapped):<math display=block>\begin{align} \overline{A'U} &= \overline{A'U'} = 3\sqrt{10} \,, \\[2pt] \overline{A'V} &= \overline{A'V'} = \sqrt{34} \,. \end{align}</math> In [[crystallography]], regular right symmetric didigonal ({{math|8}}-faced) and ditrigonal ({{math|12}}-faced) scalenohedra exist.<ref name=tulane /><ref name=uwgb /> The smallest geometric scalenohedra have eight faces, and are topologically identical to the regular [[octahedron]]. In this case ({{math|1=2''n'' = 2×2}}), in crystallography, a regular right symmetric didigonal ({{math|8}}-faced) scalenohedron is called a ''tetragonal scalenohedron''.<ref name=tulane /><ref name=uwgb /> Let us temporarily focus on the regular right symmetric {{math|8}}-faced scalenohedra with {{math|1=''h'' = ''r'',}} i.e. <math display=block> z_{A} = |z_{A'}| = x_{U} = |x_{U'}| = y_{V} = |y_{V'}|. </math> Their two apices can be represented as {{mvar|A, A'}} and their four basal vertices as {{mvar|U, U', V, V'}}: <math display=block>\begin{alignat}{5} U &= (1,0,z), & \quad V &= (0,1,-z), & \quad A &= (0,0,1), \\ U' &= (-1,0,z), & \quad V' &= (0,-1,-z), & \quad A' &= (0,0,-1), \end{alignat}</math> where {{mvar|z}} is a parameter between {{math|0}} and {{math|1}}. At {{math|1=''z'' = 0}}, it is a regular octahedron; at {{math|1=''z'' = 1}}, it has four pairs of coplanar faces, and merging these into four congruent isosceles triangles makes it a [[disphenoid]]; for {{math|''z'' > 1}}, it is concave. {| class=wikitable |+ style="text-align:center;"|Example: geometric variations with regular right symmetric 8-faced scalenohedra: !{{math|1=''z'' = 0.1}} !{{math|1=''z'' = 0.25}} !{{math|1=''z'' = 0.5}} !{{math|1=''z'' = 0.95}} !{{math|1=''z'' = 1.5}} |- |[[File:4-scalenohedron-01.png|120px]] |[[File:4-scalenohedron-025.png|120px]] |[[File:4-scalenohedron-05.png|120px]] |[[File:4-scalenohedron-095.png|120px]] |[[File:4-scalenohedron-15.png|120px]] |} If the {{math|2''n''}}-gon base is both [[Isotoxal figure|isotoxal]] in-out and [[Skew polygon|zigzag skew]], then '''not''' all faces of the isotoxal right symmetric scalenohedron are congruent. Example with five different edge lengths: *The scalenohedron with isotoxal in-out zigzag skew {{math|2×2}}-gon base vertices {{mvar|U, U', V, V'}} and right symmetric apices {{mvar|A, A'}} <math display=block>\begin{alignat}{5} U &= (1,0,1), & \quad V &= (0,2,-1), & \quad A &= (0,0,3), \\ U' &= (-1,0,1), & \quad V' &= (0,-2,-1), & \quad A' &= (0,0,-3), \end{alignat}</math> has congruent scalene upper faces, and congruent scalene lower faces, but not all its faces are congruent. Indeed: **Upper apical edge lengths:<math display=block>\begin{align} \overline{AU} &= \overline{AU'} = \sqrt{5} \,, \\[2pt] \overline{AV} &= \overline{AV'} = 2\sqrt{5} \,; \end{align}</math> **Base edge length:<math display=block> \overline{UV} = \overline{VU'} = \overline{U'V'} = \overline{V'U} = 3; </math> **Lower apical edge lengths:<math display=block>\begin{align} \overline{A'U} &= \overline{A'U'} = \sqrt{17} \,, \\[2pt] \overline{A'V} &= \overline{A'V'} = 2\sqrt{2} \,. \end{align}</math> For some particular values of {{math|1=''z{{sub|A}}'' = {{!}}''z{{sub|A'}}''{{!}}}}, half the faces of such a '''scaleno'''hedron may be [[Isosceles triangle|'''isosceles''']] or [[Equilateral triangle|'''equilateral''']]. Example with three different edge lengths: *The scalenohedron with isotoxal in-out zigzag skew {{math|2×2}}-gon base vertices {{mvar|U, U', V, V'}} and right symmetric apices {{mvar|A, A'}} <math display=block>\begin{alignat}{5} U &= (3,0,2), & \quad V &= \left( 0,\sqrt{65},-2 \right), & \quad A &= (0,0,7), \\ U' &= (-3,0,2), & \quad V' &= \left( 0,-\sqrt{65},-2 \right), & \quad A' &= (0,0,-7), \end{alignat}</math> has congruent scalene upper faces, and congruent equilateral lower faces; thus not all its faces are congruent. Indeed: **Upper apical edge lengths:<math display=block>\begin{align} \overline{AU} &= \overline{AU'} = \sqrt{34} \,, \\[2pt] \overline{AV} &= \overline{AV'} = \sqrt{146} \,; \end{align}</math> **Base edge length:<math display=block> \overline{UV} = \overline{VU'} = \overline{U'V'} = \overline{V'U} = 3\sqrt{10} \,; </math> **Lower apical edge length(s): <math display=block>\begin{align} \overline{A'U} &= \overline{A'U'} = 3\sqrt{10} \,, \\[2pt] \overline{A'V} &= \overline{A'V'} = 3\sqrt{10} \,. \end{align}</math> === Star bipyramids === A '''''star'' bipyramid''' has a [[star polygon]] base, and is self-intersecting.<ref>{{cite journal |last= Rankin |first=John R. |year=1988 |title= Classes of polyhedra defined by jet graphics |journal=Computers & Graphics |volume=12 |issue=2 |pages=239–254 |doi=10.1016/0097-8493(88)90036-2}}</ref> A regular right symmetric star bipyramid has [[Congruence (geometry)|congruent]] [[Isosceles triangle|isosceles]] triangle faces, and is [[Isohedral figure|isohedral]]. A {{math|''p''/''q''}}-bipyramid has [[Coxeter diagram]] {{CDD|node_f1|2x|node_f1|p|rat|q|node}}. {| class=wikitable |+ style="text-align:center;"|Example star bipyramids: |- align=center !Base ![[Pentagrammic bipyramid|5/2]]-gon !7/2-gon !7/3-gon !8/3-gon |- align=center !Image |[[File:Pentagram Dipyramid.png|100px]] |[[File:7-2 dipyramid.png|125px]] |[[File:7-3 dipyramid.png|125px]] |[[File:8-3 dipyramid.png|125px]] |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Bipyramid
(section)
Add topic