Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Atomic electron transition
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Theory == An atom interacts with the oscillating electric field: {{NumBlk|:|<math> E(t) = |\textbf{E}_0| Re( e^{-i{\omega}t} \hat{\textbf{e}}_\mathrm{rad} )</math>|{{EquationRef|1}}}} with amplitude <math>|\textbf{E}_0|</math>, angular frequency <math>\omega</math>, and polarization vector <math>\hat{\textbf{e}}_\mathrm{rad}</math>.<ref>{{Cite book|title=Atomic Physics|author=Foot, CJ|year=2004| publisher=Oxford University Press|isbn=978-0-19-850696-6}}</ref> Note that the actual phase is <math> (\omega t - \textbf{k} \cdot \textbf{r}) </math>. However, in many cases, the variation of <math> \textbf{k} \cdot \textbf{r} </math> is small over the atom (or equivalently, the radiation wavelength is much greater than the size of an atom) and this term can be ignored. This is called the dipole approximation. The atom can also interact with the oscillating magnetic field produced by the radiation, although much more weakly. The Hamiltonian for this interaction, analogous to the energy of a classical dipole in an electric field, is <math> H_I = e \textbf{r} \cdot \textbf{E}(t) </math>. The stimulated transition rate can be calculated using [[time-dependent perturbation theory]]; however, the result can be summarized using [[Fermi's golden rule]]: <math display="block"> Rate \propto |eE_0|^2 \times | \lang 2 | \textbf{r} \cdot \hat{\textbf{e}}_\mathrm{rad} |1 \rang |^2 </math> The dipole matrix element can be decomposed into the product of the radial integral and the angular integral. The angular integral is zero unless the [[selection rules]] for the atomic transition are satisfied.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Atomic electron transition
(section)
Add topic