Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Analytic function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == Typical examples of analytic functions are * The following [[elementary function]]s: ** All [[polynomial]]s: if a polynomial has degree ''n'', any terms of degree larger than ''n'' in its Taylor series expansion must immediately vanish to 0, and so this series will be trivially convergent. Furthermore, every polynomial is its own [[Maclaurin series]]. ** The [[exponential function]] is analytic. Any Taylor series for this function converges not only for ''x'' close enough to ''x''<sub>0</sub> (as in the definition) but for all values of ''x'' (real or complex). ** The [[trigonometric function]]s, [[logarithm]], and the [[Exponentiation|power functions]] are analytic on any open set of their domain. * Most [[special function]]s (at least in some range of the complex plane): ** [[hypergeometric function]]s ** [[Bessel function]]s ** [[gamma function]]s Typical examples of functions that are not analytic are * The [[absolute value]] function when defined on the set of real numbers or [[complex number]]s is not everywhere analytic because it is not differentiable at 0. * [[Piecewise|Piecewise defined]] functions (functions given by different formulae in different regions) are typically not analytic where the pieces meet. * The [[complex conjugate]] function ''z'' → ''z''* is not complex analytic, although its restriction to the real line is the identity function and therefore real analytic, and it is real analytic as a function from <math>\mathbb{R}^{2}</math> to <math>\mathbb{R}^{2}</math>. * Other [[non-analytic smooth function]]s, and in particular any smooth function <math>f</math> with compact support, i.e. <math>f \in \mathcal{C}^\infty_0(\R^n)</math>, cannot be analytic on <math>\R^n</math>.<ref>{{Cite book|last=Strichartz, Robert S.|url=https://www.worldcat.org/oclc/28890674|title=A guide to distribution theory and Fourier transforms|date=1994|publisher=CRC Press|isbn=0-8493-8273-4|location=Boca Raton|oclc=28890674}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Analytic function
(section)
Add topic