Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Alexander Fleming
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Scientific contributions== ===Antiseptics=== During World War I, Fleming with [[Leonard Colebrook]] and Sir Almroth Wright joined the war efforts and practically moved the entire Inoculation Department of St Mary's to the British military hospital at [[Boulogne-sur-Mer]]. Serving as a temporary lieutenant of the Royal Army Medical Corps, he witnessed the death of many soldiers from [[sepsis]] resulting from infected [[wound]]s. [[Antiseptic]]s, which were used at the time to treat infected wounds, he observed, often worsened the injuries.<ref name="SingMedJ">{{cite journal|last1=Tan|first1=S. Y.|last2=Tatsumura|first2=Y.|date=July 2015|title=Alexander Fleming (1881β1955): Discoverer of penicillin|journal=Singapore Medical Journal|volume=56|issue=7|pages=366β367|doi=10.11622/smedj.2015105|pmc=4520913|pmid=26243971}}</ref> In an article published in the medical journal ''[[The Lancet]]'' in 1917, he described an ingenious experiment, which he was able to conduct as a result of his own [[glassblowing]] skills, in which he explained why antiseptics were killing more soldiers than infection itself during the war. Antiseptics worked well on the surface, but deep wounds tended to shelter [[anaerobic bacteria]] from the antiseptic agent, and antiseptics seemed to remove beneficial agents produced that protected the patients in these cases at least as well as they removed bacteria, and did nothing to remove the bacteria that were out of reach.<ref>{{cite journal |last1=Fleming |first1=Alexander |title=The Physiological and Antiseptic Action of Flavine (With Some Observations on the Testing of Antiseptics) |journal=The Lancet |date=September 1917 |volume=190 |issue=4905 |pages=341β345 |doi=10.1016/S0140-6736(01)52126-1 |url=https://zenodo.org/record/2098298 }}</ref> Wright strongly supported Fleming's findings, but despite this, most army physicians over the course of the war continued to use antiseptics even in cases where this worsened the condition of the patients.<ref name="Fleming bio">{{cite journal | last= Mazumdar |first=P. M. | title = Fleming as Bacteriologist: Alexander Fleming | journal = Science | volume = 225 | issue = 4667 | pages = 1140β1141 | year = 1984 | pmid = 17782415 | doi = 10.1126/science.225.4667.1140 | bibcode = 1984Sci...225.1140C }}</ref> === Discovery of lysozyme === At St Mary's Hospital, Fleming continued his investigations into bacteria culture and antibacterial substances. As his research scholar at the time V. D. Allison recalled, Fleming was not a tidy researcher and usually expected unusual bacterial growths in his culture plates. Fleming had teased Allison of his "excessive tidiness in the laboratory", and Allison rightly attributed such untidiness as the success of Fleming's experiments, and said, "[If] he had been as tidy as he thought I was, he would not have made his two great discoveries."<ref name=":0">{{cite journal|last=Allison|first=V. D.|date=1974|title=Personal recollections of Sir Almroth Wright and Sir Alexander Fleming.|journal=The Ulster Medical Journal|volume=43|issue=2|pages=89β98|pmc=2385475|pmid=4612919}}</ref> In late 1921, while Fleming was maintaining [[agar plates]] for bacteria, he found that one of the plates was contaminated with bacteria from the air. When he added nasal mucus, he found that the mucus inhibited the bacterial growth.<ref name=":2">{{cite journal|last=Fleming|first=A.|year=1922|title=On a remarkable bacteriolytic element found in tissues and secretions|journal=Proceedings of the Royal Society B|volume=93|issue=653|pages=306β317|doi=10.1098/rspb.1922.0023|bibcode=1922RSPSB..93..306F|doi-access=free}}</ref> Surrounding the mucus area was a clear transparent circle (1 cm from the mucus), indicating the [[Zone of inhibition|killing zone]] of bacteria, followed by a glassy and translucent ring beyond which was an opaque area indicating normal bacterial growth. In the next test, he used bacteria maintained in saline that formed a yellow suspension. Within two minutes of adding fresh mucus, the yellow saline turned completely clear. He extended his tests using tears, which were contributed by his co-workers. As Allison reminisced, saying, "For the next five or six weeks, our tears were the source of supply for this extraordinary phenomenon. Many were the lemons we used (after the failure of onions) to produce a flow of tears... The demand by us for tears was so great, that laboratory attendants were pressed into service, receiving threepence for each contribution."<ref name=":0" /> His further tests with sputum, cartilage, blood, semen, ovarian cyst fluid, pus, and egg white showed that the bactericidal agent was present in all of these.<ref name=":3" /> He reported his discovery before the Medical Research Club in December and before the [[Royal Society]] the next year but failed to stir any interest, as Allison recollected:<blockquote> I was present at this [Medical Research Club] meeting as Fleming's guest. His paper describing his discovery was received with no questions asked and no discussion, which was most unusual and an indication that it was considered to be of no importance. The following year he read a paper on the subject before the Royal Society, Burlington House, Piccadilly and he and I gave a demonstration of our work. Again with one exception little comment or attention was paid to it.<ref name=":0" /></blockquote> Reporting in the 1 May 1922 issue of the ''[[Proceedings of the Royal Society B: Biological Sciences]]'' under the title "On a remarkable bacteriolytic element found in tissues and secretions", Fleming wrote:<blockquote>In this communication I wish to draw attention to a substance present in the tissues and secretions of the body, which is capable of rapidly dissolving certain bacteria. As this substance has properties akin to those of ferments I have called it a "[[Lysozyme]]", and shall refer to it by this name throughout the communication. The lysozyme was first noticed during some investigations made on a patient suffering from [[Rhinitis|acute coryza]].<ref name=":2" /></blockquote>This was the first recorded discovery of lysozyme. With Allison, he published further studies on lysozyme in October issue of the ''British Journal of Experimental Pathology'' the same year.<ref>{{cite journal|last1=Fleming|first1=Alexander|last2=Allison|first2=V. D.|date=1922|title=Observations on a Bacteriolytic Substance ("Lysozyme") Found in Secretions and Tissues|journal=British Journal of Experimental Pathology|volume=3|issue=5|pages=252β260|pmc=2047739}}</ref> Although he was able to obtain larger amounts of lysozyme from egg whites, the enzyme was only effective against small counts of harmless bacteria, and therefore had little therapeutic potential. This indicates one of the major differences between [[Pathogenic bacteria|pathogenic]] and harmless bacteria.<ref name="SingMedJ" /> Described in the original publication, "a patient suffering from acute coryza"<ref name=":2" /> was later identified as Fleming himself. His research notebook dated 21 November 1921 showed a sketch of the culture plate with a small note: "Staphyloid coccus from A.F.'s nose."<ref name=":3" /> He also identified the bacterium present in the nasal mucus as ''Micrococcus Lysodeikticus'', giving the species name (meaning "lysis indicator" for its susceptibility to lysozymal activity).<ref>{{cite journal|last=Salton|first=M. R. J.|date=1957|title=The properties of lysozyme and its action on micororganisms|journal=Bacteriological Reviews|volume=21|issue=2|pages=82β100|doi=10.1128/MMBR.21.2.82-100.1957|pmc=180888|pmid=13436356}}</ref> The species was reassigned as ''[[Micrococcus luteus]]'' in 1972.<ref>{{cite journal|last1=Schleifer|first1=K. H.|last2=Kloos|first2=W. E.|last3=Moore|first3=A.|date=1972|title=Taxonomic Status of Micrococcus luteus (Schroeter 1872) Cohn 1872: Correlation Between Peptidoglycan Type and Genetic Compatibility|journal=International Journal of Systematic Bacteriology|volume=22|issue=4|pages=224β227|doi=10.1099/00207713-22-4-224|doi-access=free}}</ref> The "Fleming strain" (NCTC2665) of this bacterium has become a model in different biological studies.<ref>{{cite journal|last1=Young|first1=Michael|last2=Artsatbanov|first2=Vladislav|last3=Beller|first3=Harry R.|last4=Chandra|first4=Govind|last5=Chater|first5=Keith F.|last6=Dover|first6=Lynn G.|last7=Goh|first7=Ee-Been|last8=Kahan|first8=Tamar|last9=Kaprelyants|first9=Arseny S.|last10=Kyrpides|first10=Nikos|last11=Lapidus|first11=Alla|date=2010|title=Genome Sequence of the Fleming Strain of Micrococcus luteus, a Simple Free-Living Actinobacterium|journal=Journal of Bacteriology|volume=192|issue=3|pages=841β860|doi=10.1128/JB.01254-09|pmc=2812450|pmid=19948807}}</ref><ref>{{cite web|last=Canada|first=Environment and Climate Change|date=23 February 2018|title=Final Screening Assessment of Micrococcus luteus strain ATCC 4698|url=https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/screening-assessment-micrococcus-luteus.html|access-date=17 October 2020|website=aem}}</ref> The importance of lysozyme was not recognised, and Fleming was well aware of this, in his presidential address at the [[Royal Society of Medicine]] meeting on 18 October 1932, he said:<blockquote>I choose lysozyme as the subject for this address for two reasons, firstly because I have a fatherly interest in the name, and, secondly, because its importance in connection with natural immunity does not seem to be generally appreciated.<ref>{{cite journal|last=Fleming|first=Alexander|date=1932|title=Lysozyme|journal=Proceedings of the Royal Society of Medicine|volume=26|issue=2|pages=71β84|doi=10.1177/003591573202600201|s2cid=209362460|doi-access=free|pmc=2204285}}</ref> </blockquote>In his Nobel lecture on 11 December 1945, he briefly mentioned lysozyme, saying, "Penicillin was not the first antibiotic I happened to discover."<ref name=":12">{{cite web|last=Fleming|first=A.|date=1945|title=The Nobel Prize in Physiology or Medicine 1945 β Penicillin: Nobel Lecture|url=https://www.nobelprize.org/prizes/medicine/1945/fleming/lecture/|access-date=17 October 2020|website=NobelPrize.org}}</ref> It was only towards the end of the 20th century that the true importance of Fleming's discovery in immunology was realised as lysozyme became the first [[antimicrobial protein]] discovered that constitute part of our [[innate immunity]].<ref>{{cite journal|last=Gallo|first=Richard L.|date=2013|title=The birth of innate immunity|url=http://doi.wiley.com/10.1111/exd.12197|journal=Experimental Dermatology|volume=22|issue=8|pages=517|doi=10.1111/exd.12197|pmid=23879811|s2cid=23482849}}</ref><ref>{{cite journal|last1=Ragland|first1=Stephanie A.|last2=Criss|first2=Alison K.|date=2017|title=From bacterial killing to immune modulation: Recent insights into the functions of lysozyme|journal=PLOS Pathogens|volume=13|issue=9|pages=e1006512|doi=10.1371/journal.ppat.1006512|pmc=5608400|pmid=28934357 |doi-access=free }}</ref> ===Discovery of penicillin=== {{Main|History of penicillin}} [[File:PenicillinPSAedit.jpg|thumb|An advertisement advertising penicillin's "miracle cure"]] {{blockquote| One sometimes finds what one is not looking for. When I woke up just after dawn on September 28, 1928, I certainly didn't plan to revolutionize all medicine by discovering the world's first antibiotic, or bacteria killer. But I suppose that was exactly what I did.|Alexander Fleming<ref>{{cite book|last=Haven|first =Kendall F.|title=Marvels of Science : 50 Fascinating 5-Minute Reads|publisher=Libraries Unlimited|location=Littleton, Colo|year=1994|page= 182|isbn=1-56308-159-8}}</ref>|source=}} ==== Experiment ==== By 1927, Fleming had been investigating the properties of [[staphylococci]]. He was already well known from his earlier work, and had developed a reputation as a brilliant researcher. In 1928, he studied the variation of ''[[Staphylococcus aureus]]'' grown under natural condition, after the work of Joseph Warwick Bigger, who discovered that the bacterium could grow into a variety of types (strains).<ref>{{cite journal|last1=Bigger|first1=Joseph W.|last2=Boland|first2=C. R.|last3=O'meara|first3=R. A. Q.|date=1927|title=Variant colonies ofStaphylococcus aureus|journal=The Journal of Pathology and Bacteriology|volume=30|issue=2|pages=261β269|doi=10.1002/path.1700300204}}</ref> On 3 September 1928, Fleming returned to his laboratory having spent a holiday with his family at Suffolk. Before leaving for his holiday, he inoculated staphylococci on culture plates and left them on a bench in a corner of his laboratory.<ref name=":3">{{cite journal|last=Lalchhandama|first=Kholhring|date=2020|title=Reappraising Fleming's snot and mould|url=https://www.sciencevision.org/issue/44/article/292|journal=Science Vision|volume=20|issue=1|pages=29β42|doi=10.33493/scivis.20.01.03|doi-access=free}}</ref> On his return, Fleming noticed that one culture was contaminated with a fungus, and that the colonies of staphylococci immediately surrounding the fungus had been destroyed, whereas other staphylococci colonies farther away were normal, famously remarking "That's funny".<ref>Brown, K. (2004). ''Penicillin Man: Alexander Fleming and the Antibiotic Revolution''. 320 pp. Sutton Publishing. {{ISBN|0-7509-3152-3}}.</ref> Fleming showed the contaminated culture to his former assistant Merlin Pryce, who reminded him, "That's how you discovered lysozyme."<ref>Hare, R. ''The Birth of Penicillin'', Allen & Unwin, London, 1970</ref>{{Page needed|date=January 2025|reason=Quote not found via automatic text search}} He identified the mould as being from the genus ''[[Penicillium]].'' He suspected it to be ''P. chrysogenum,'' but a colleague Charles J. La Touche identified it as ''P. rubrum.'' (It was later corrected as ''P. notatum'' and then officially accepted as ''P. chrysogenum''; in 2011, it was resolved as ''P. rubens.'')<ref>{{cite journal|last1=Houbraken|first1=Jos|last2=Frisvad|first2=Jens C.|last3=Samson|first3=Robert A.|date=2011|title=Fleming's penicillin producing strain is not Penicillium chrysogenum but P. rubens|journal=IMA Fungus|volume=2|issue=1|pages=87β95|doi=10.5598/imafungus.2011.02.01.12|pmc=3317369|pmid=22679592}}</ref><ref>{{cite journal|last1=Hibbett|first1=David S.|last2=Taylor|first2=John W.|date=2013|title=Fungal systematics: is a new age of enlightenment at hand?|url=https://www.nature.com/articles/nrmicro2963|journal=Nature Reviews Microbiology|volume=11|issue=2|pages=129β133|doi=10.1038/nrmicro2963|pmid=23288349|s2cid=17070407}}</ref> [[File:Fleming's Plaque - geograph.org.uk - 1452410.jpg|thumb|right|Commemorative plaque marking Fleming's discovery of penicillin at [[St Mary's Hospital, London]] ]] The laboratory in which Fleming discovered and tested penicillin is preserved as the [[Alexander Fleming Laboratory Museum]] in St. Mary's Hospital, [[Paddington]]. The source of the fungal contaminant was established in 1966 as coming from La Touche's room, which was directly below Fleming's.<ref name=":7">{{cite journal|last=Hare|first=R.|date=1982|title=New light on the history of penicillin|journal=Medical History|volume=26|issue=1|pages=1β24|doi=10.1017/s0025727300040758|pmc=1139110|pmid=7047933}}</ref><ref>{{cite journal|last=Curry |first=J.|date=1981|title=Obituary: C. J. La Touche|journal=Medical Mycology|volume=19|issue=2|page=164|doi=10.1080/00362178185380261}}</ref> Fleming grew the mould in a pure culture and found that the culture broth contained an antibacterial substance. He investigated its anti-bacterial effect on many organisms, and noticed that it affected bacteria such as staphylococci and many other [[Gram-positive]] pathogens that cause [[scarlet fever]], [[pneumonia]], [[meningitis]] and [[diphtheria]], but not [[typhoid fever]] or [[paratyphoid fever]], which are caused by [[Gram-negative]] bacteria, for which he was seeking a cure at the time. It also affected ''[[Neisseria gonorrhoeae]],'' which causes [[gonorrhoea]], although this bacterium is Gram-negative. After some months of calling it "mould juice" or "the inhibitor", he gave the name [[penicillin]] on 7 March 1929 for the antibacterial substance present in the mould.<ref name=":52" /> ==== Reception and publication ==== Fleming presented his discovery on 13 February 1929 before the Medical Research Club. His talk on "A medium for the isolation of [[Pfeiffer's bacillus]]" did not receive any particular attention or comment. Henry Dale, the then Director of [[National Institute for Medical Research]] and chair of the meeting, much later reminisced that he did not even sense any striking point of importance in Fleming's speech.<ref name=":3" /> Fleming published his discovery in 1929 in the ''British Journal of Experimental Pathology,''<ref>{{cite journal|last=Fleming|first=Alexander|year=1929|title=On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae|journal=British Journal of Experimental Pathology|volume=10|issue=3|pages=226β236|pmc=2041430|pmid=2048009}}; Reprinted as {{cite journal|last=Fleming |first=A.|year=1979|title=On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae|journal=British Journal of Experimental Pathology|volume=60|issue=1|pages=3β13|pmc=2041430}}</ref> but little attention was paid to the article. His problem was the difficulty of producing penicillin in large amounts, and moreover, isolation of the main compound. Even with the help of Harold Raistrick and his team of biochemists at the [[London School of Hygiene & Tropical Medicine]], chemical purification was futile. "As a result, penicillin languished largely forgotten in the 1930s", as [[Milton Wainwright]] described.<ref name=":6" /> As late as in 1936, there was no appreciation for penicillin. When Fleming talked of its medical importance at the Second International Congress of Microbiology held in London,<ref>{{cite journal|date=1936|title=International Congress of Microbiology|journal=British Medical Journal|volume=2|issue=3944|pages=307β310|doi=10.1136/bmj.2.3943.253|pmc=2457049}}</ref><ref>{{cite journal|last=Dixon|first=Bernard|date=1986|title=A Salute to the Pioneers of Microbiology|journal=Nature Biotechnology|volume=4|issue=8|pages=681|doi=10.1038/nbt0886-681|s2cid=37941905|doi-access=free}}</ref> no one believed him. As Allison, his companion in both the Medical Research Club and international congress meeting, remarked the two occasions:<blockquote>[Fleming at the Medical Research Club meeting] suggested the possible value of penicillin for the treatment of infection in man. Again there was a total lack of interest and no discussion. Fleming was keenly disappointed, but worse was to follow. He read a paper on his work on penicillin at a meeting of the International Congress of Microbiology, attended by the foremost bacteriologists from all over the world. There was no support for his views on its possible future value for the prevention and treatment of human infections and discussion was minimal. Fleming bore these disappointments stoically, but they did not alter his views or deter him from continuing his investigation of penicillin.<ref name=":0" /></blockquote>In 1941, the ''[[British Medical Journal]]'' reported that "[Penicillin] does not appear to have been considered as possibly useful from any other point of view."<ref>{{cite journal|date=August 1941|title=Annotations|journal=British Medical Journal|volume=2|issue=4208|pages=310β312|doi=10.1136/bmj.2.4208.310|pmc=2162429|pmid=20783842}}</ref><ref>{{cite journal|last=Fleming |first=A.|date=September 1941|title=Penicillin|journal=British Medical Journal|volume=2|issue=4210|page=386|doi=10.1136/bmj.2.4210.386|pmc=2162878}}</ref><ref name=":7" /> ==== Purification and stabilisation ==== [[File:Penicillin-G 3D.png|thumb|left|3D-model of benzylpenicillin]] In Oxford, [[Ernst Chain]] and [[Edward Abraham]] were studying the molecular structure of the antibiotic. Abraham was the first to propose the correct structure of penicillin.<ref>in October 1943 Abraham proposed a molecular structure which included a cyclic formation containing three carbon atoms and one nitrogen atom, the Ξ²-lactam ring, not then known in natural products. This structure was not immediately published due to the restrictions of wartime secrecy, and was initially strongly disputed, by Sir Robert Robinson among others, but it was finally confirmed in 1945 by Dorothy Crowfoot Hodgkin using X-ray analysis." Oxford Dictionary of National Biography; "Abraham, Sir Edward Penley"</ref><ref>{{cite news|url=https://www.independent.co.uk/arts-entertainment/obituary-sir-edward-abraham-1093226.html |archive-url=https://web.archive.org/web/20131004222647/http://www.independent.co.uk/arts-entertainment/obituary-sir-edward-abraham-1093226.html |archive-date=2013-10-04 |url-access=limited |url-status=live|location=London|work=The Independent |first=Gordon|last=Lowe|title=Obituary: Sir Edward Abraham|date=13 May 1999}}</ref> Shortly after the team published its first results in 1940, Fleming telephoned [[Howard Florey]], Chain's head of department, to say that he would be visiting within the next few days. When Chain heard that Fleming was coming, he remarked "Good God! I thought he was dead."<ref>{{cite web|last=Yanes|first=Javier|date=6 August 2018|title=Fleming and the Difficult Beginnings of Penicillin: Myth and Reality|url=https://www.bbvaopenmind.com/en/science/bioscience/fleming-and-the-difficult-beginnings-of-penicillin-myth-and-reality/|access-date=7 June 2020|website=OpenMind}}</ref> [[Norman Heatley]] suggested transferring the active ingredient of penicillin back into water by changing its acidity. This produced enough of the drug to begin testing on animals. There were many more people involved in the Oxford team, and at one point the entire [[Sir William Dunn School of Pathology]] was involved in its production. After the team had developed a method of purifying penicillin to an effective first stable form in 1940, several clinical trials ensued, and their amazing success inspired the team to develop methods for mass production and mass distribution in 1945.<ref>{{cite journal|last=Moberg|first=C.|date=1991|title=Penicillin's forgotten man: Norman Heatley|journal=Science|volume=253|issue=5021|pages=734β735|doi=10.1126/science.1876832|pmid=1876832|bibcode=1991Sci...253..734M}}</ref><ref>{{cite web|date=23 January 2004|title=Norman Heatley|url=https://www.independent.co.uk/news/obituaries/norman-heatley-37866.html |archive-url=https://web.archive.org/web/20201116013016/https://www.independent.co.uk/news/obituaries/norman-heatley-37866.html |archive-date=16 November 2020 |url-access=limited |url-status=live|access-date=7 June 2020|website=The Independent|location=London}}</ref> Fleming was modest about his part in the development of penicillin, describing his fame as the "Fleming Myth" and he praised Florey and Chain for transforming the laboratory curiosity into a practical drug. Fleming was the first to discover the properties of the active substance, giving him the privilege of naming it: penicillin. He also kept, grew, and distributed the original mould for twelve years, and continued until 1940 to try to get help from any chemist who had enough skill to make penicillin. Sir [[Henry Harris (scientist)|Henry Harris]] summed up the process in 1998 as: "Without Fleming, no Chain; without Chain, no Florey; without Florey, no Heatley; without Heatley, no penicillin."<ref>Henry Harris, ''Howard Florey and the development of penicillin'', a lecture given on 29 September 1998, at the Florey Centenary, 1898β1998, Sir William Dunn School of Pathology, Oxford University (sound recording) [http://catalogue.nla.gov.au/Record/1610017]</ref> The discovery of penicillin and its subsequent development as a prescription drug mark the start of modern [[antibiotics]].<ref>{{cite journal|last1=Conly|first1=J. M.|last2=Johnston|first2=B. L.|date=2005|title=Where are all the new antibiotics? The new antibiotic paradox|journal=Canadian Journal of Infectious Diseases and Medical Microbiology|volume=16|issue=3|pages=159β160|doi=10.1155/2005/892058|pmc=2095020|pmid=18159536|doi-access=free}}</ref> ==== Medical use and mass production ==== In his first clinical trial, Fleming treated his research scholar Stuart Craddock who had developed severe infection of the [[nasal antrum]] ([[sinusitis]]). The treatment started on 9 January 1929 but without any effect. It probably was due to the fact that the infection was with influenza bacillus (''Haemophilus influenzae''), the bacterium which he had found unsusceptible to penicillin.<ref name=":7" /> Fleming gave some of his original penicillin samples to his colleague-surgeon Arthur Dickson Wright for clinical test in 1928.<ref>{{cite journal|last1=Wainwright|first1=M.|last2=Swan|first2=H. T.|date=1987|title=The Sheffield penicillin story|url=https://linkinghub.elsevier.com/retrieve/pii/S0269915X87800228|journal=Mycologist|volume=1|issue=1|pages=28β30|doi=10.1016/S0269-915X(87)80022-8}}</ref><ref name=":11">{{cite journal|last=Wainwright|first=Milton|date=1990|title=Besredka's "antivirus" in relation to Fleming's initial views on the nature of penicillin|journal=Medical History|volume=34|issue=1|pages=79β85|doi=10.1017/S0025727300050286|pmc=1036002|pmid=2405221}}</ref> Although Wright reportedly said that it "seemed to work satisfactorily",<ref>{{cite journal|last=Wainwright|first=M.|date=1987|title=The history of the therapeutic use of crude penicillin.|journal=Medical History|volume=31|issue=1|pages=41β50|doi=10.1017/s0025727300046305|pmc=1139683|pmid=3543562}}</ref> there are no records of its specific use. Cecil George Paine, a pathologist at the [[Sheffield Royal Infirmary|Royal Infirmary in Sheffield]] and former student of Fleming, was the first to use penicillin successfully for medical treatment.<ref name=":6">{{cite journal|last=Wainwright|first=Milton|date=1993|title=The Mystery of the Plate: Fleming's Discovery and Contribution to the Early Development of Penicillin|url=http://journals.sagepub.com/doi/10.1177/096777209300100113|journal=Journal of Medical Biography|volume=1|issue=1|pages=59β65|doi=10.1177/096777209300100113|pmid=11639213|s2cid=7578843}}</ref> He cured eye infections ([[conjunctivitis]]) of one adult and three infants ([[neonatal conjunctivitis]]) on 25 November 1930.<ref>{{cite journal|last=Wainwright |first=M. |last2=Swan |first2=H. T.|date=January 1986|title=C.G. Paine and the earliest surviving clinical records of penicillin therapy|journal=Medical History|volume=30|issue=1|pages=42β56|doi=10.1017/S0025727300045026|pmc=1139580|pmid=3511336}}</ref> [[File:Professor Alexander Fleming at work in his laboratory at St Mary's Hospital, London, during the Second World War. D17801.jpg|thumb|left|Fleming in his laboratory in 1943]] Fleming also successfully treated severe conjunctivitis in 1932.<ref name=":4" /><ref name=":8">{{cite journal|last=Howie|first=J.|date=1986|title=Penicillin: 1929β40|journal=British Medical Journal (Clinical Research Ed.)|volume=293|issue=6540|pages=158β159|doi=10.1136/bmj.293.6540.158|pmc=1340901|pmid=3089435}}</ref><ref>{{cite journal|last=Glover|first=J.|date=1986|title=The MRC and informed consent|journal=British Medical Journal|volume=293|issue=6540|pages=157β158|doi=10.1136/bmj.293.6540.157|pmc=1340900|pmid=3089434}}</ref> Keith Bernard Rogers, who had joined St Mary's as medical student in 1929,<ref>{{cite book|last=Heaman|first=Elsbeth A.|url=https://www.worldcat.org/oclc/144085272|title=St Mary's: The History of a London Teaching Hospital|date=2003|publisher=McGill-Queen's University Press|isbn=978-0-7735-7086-3|location=Montreal, Que.|pages=212|oclc=144085272}}</ref> was captain of the London University rifle team and was about to participate in an inter-hospital rifle shooting competition when he developed conjunctivitis.<ref>{{cite book|last=Marko|first=Vladimir|chapter=Penicillin |url=https://www.worldcat.org/oclc/1164582807|title=From Aspirin to Viagra: Stories of the Drugs that Changed the World|date=2020|publisher=Springer|isbn=978-3-030-44286-6|pages=105β106|doi=10.1007/978-3-030-44286-6_5|s2cid=241636139 |oclc=1164582807}}</ref><ref name=":9" /><ref>{{cite book|last=Maurois|first=AndrΓ©|url=https://books.google.com/books?id=qOtWAAAAYAAJ&q=conjunctivitis+rogers+penicillin|title=The Life of Sir Alexander Fleming: Discoverer of Penicillin|date=1963|publisher=Penguin Books|isbn=1-199-30814-5|pages=156}}</ref> Fleming applied his penicillin and cured Rogers before the competition.<ref name=":4" /><ref name=":8" /><ref>{{cite journal|last=Aronson|first=J. K.|date=1992|title=Penicillin|url=http://link.springer.com/10.1007/BF00314911|journal=European Journal of Clinical Pharmacology|volume=42|issue=1|pages=1β9|doi=10.1007/BF00314911|pmid=1541305|s2cid=62877498 }}</ref> It is said that the "penicillin worked and the match was won." However, the report that "Keith was probably the first patient to be treated clinically with penicillin ointment"<ref name=":9">{{cite journal|last=Rossiter|first=Peter|date=2005|title=Keith Bernard Rogers|journal=The BMJ|volume=331|issue=7516|pages=579|doi=10.1136/bmj.331.7516.579-c|pmc=1200632}}</ref> is no longer true as Paine's medical records showed up.<ref name=":52">{{cite journal|last=Diggins |first=F. W.|date=1999|title=The true history of the discovery of penicillin, with refutation of the misinformation in the literature|journal=British Journal of Biomedical Science|volume=56|issue=2|pages=83β93|pmid=10695047}}</ref> There is a popular assertion both in popular and scientific literature that Fleming largely abandoned penicillin work in the early 1930s.<ref>{{cite journal|last1=Kyle|first1=Robert A.|last2=Steensma|first2=David P.|last3=Shampo|first3=Marc A.|date=2015|title=Howard Walter Florey β Production of Penicillin|journal=Mayo Clinic Proceedings|volume=90|issue=6|pages=e63β64|doi=10.1016/j.mayocp.2014.12.028|pmid=26046419|doi-access=free}}</ref><ref>{{cite journal|last=Shama|first=Gilbert|date=2017|title=Miracle near 34th street: Wartime Penicillin Research at St John's University, NY|url=https://linkinghub.elsevier.com/retrieve/pii/S0160932717300959|journal=Endeavour|volume=41|issue=4|pages=217β220|doi=10.1016/j.endeavour.2017.09.003|pmid=29055651}}</ref><ref>{{cite book|last1=Morin|first1=Robert B.|url=https://books.google.com/books?id=XE2eBQAAQBAJ&q=Fleming+abandoned+penicillin|title=Penicillins and Cephalosporins|last2=Gorman|first2=Marvin|date=2014|publisher=Academic Press|isbn=978-1-4832-7719-6|pages=xxii}}</ref><ref>{{cite book|last1=Ward|first1=John W.|url=https://books.google.com/books?id=5SDkvRBkQXAC&q=Fleming+abandoned+penicillin|title=Silent Victories: The History and Practice of Public Health in Twentieth-Century America|last2=Warren|first2=Christian|date=2006|publisher=Oxford University Press|isbn=978-0-19-974798-6|pages=50}}</ref> In his review of [[AndrΓ© Maurois]]'s ''The Life of Sir Alexander Fleming, Discoverer of Penicillin,'' William L. Kissick went so far as to say that "Fleming had abandoned penicillin in 1932... Although the recipient of many honors and the author of much scientific work, Sir Alexander Fleming does not appear to be an ideal subject for a biography."<ref>{{cite journal|last=Kissick|first=William L.|date=1959|title=The Life of Sir Alexander Fleming, Discoverer of Penicillin|journal=The Yale Journal of Biology and Medicine|volume=32|issue=2|page=140|pmc=2604061}}</ref> This is false, as Fleming continued to pursue penicillin research.<ref name=":11" /><ref>{{cite journal|last=Wainwright|first=Milton|date=2002|title=Fleming's unfinished|url=https://muse.jhu.edu/article/26157|journal=Perspectives in Biology and Medicine|volume=45|issue=4|pages=529β538|doi=10.1353/pbm.2002.0065|pmid=12388885|s2cid=32684352}}</ref> As late as in 1939, Fleming's notebook shows attempts to make better penicillin production using different media.<ref name=":52" /> In 1941, he published a method for assessment of penicillin effectiveness.<ref>{{cite journal|last=Fleming|first=A.|date=1942|title=In-vitro Tests of Penicillin Potency|url=https://linkinghub.elsevier.com/retrieve/pii/S0140673600703680|journal=The Lancet|volume=239|issue=6199|pages=732β733|doi=10.1016/S0140-6736(00)70368-0}}</ref> As to the chemical isolation and purification, [[Howard Florey]] and [[Ernst Chain]] at the [[Radcliffe Infirmary]] in Oxford took up the research to mass-produce it, which they achieved with support from World War II military projects under the British and US governments.<ref>Bickel, L. ''Florey: The Man Who Made Penicillin'', Sun Books, Melbourne, 1972. https://trove.nla.gov.au/work/21266280</ref> By mid-1942, the Oxford team produced the pure penicillin compound as yellow powder.<ref>{{cite journal|last=Abraham |first=E. P. |last2=Chain |first2=E. |last3=Holiday |first3=E. R.|date=1942|title=Purification and Some Physical and Chemical Properties of Penicillin|journal=British Journal of Experimental Pathology|volume=23|issue=3|pages=103β119|pmc=2065494}}</ref> In August 1942, Harry Lambert (an associate of Fleming's brother Robert) was admitted to St Mary's Hospital due to a life-threatening infection of the nervous system (streptococcal [[meningitis]]).<ref name=":13" /> Fleming treated him with [[sulphonamides]], but Lambert's condition deteriorated. He tested the antibiotic susceptibility and found that his penicillin could kill the bacteria. He requested Florey for the isolated sample. Florey sent the incompletely purified sample, which Fleming immediately administered into Lambert's [[spinal canal]]. Lambert showed signs of improvement the very next day,<ref name=":0" /> and completely recovered within a week.<ref name=":4" /><ref>{{cite journal|last1=Cairns|first1=H.|last2=Lewin|first2=W. S.|last3=Duthie|first3=E. S.|last4=Smith|first4=Honor V.|date=1944|title=Pneumococcal Meningitis Treated with Penicillin|url=http://www.sciencedirect.com/science/article/pii/S0140673600770851|journal=The Lancet|volume=243|issue=6299|pages=655β659|doi=10.1016/S0140-6736(00)77085-1}}</ref> Fleming published the clinical case in ''[[The Lancet]]'' in 1943.<ref>{{cite journal|last=Fleming|first=Alexander|date=1943|title=Streptococcal Meningitis treated With Penicillin.|url=https://linkinghub.elsevier.com/retrieve/pii/S0140673600874528|journal=The Lancet|volume=242|issue=6267|pages=434β438|doi=10.1016/S0140-6736(00)87452-8}}</ref> Upon this medical breakthrough, Allison informed the British [[Department of Health and Social Care|Ministry of Health]] of the importance of penicillin and the need for mass production. The [[War Cabinet]] was convinced of the usefulness upon which Sir [[Cecil Weir]], Director General of Equipment, called for a meeting on the mode of action on 28 September 1942.<ref>{{cite journal|last=Mathews|first=John A.|date=2008|title=The Birth of the Biotechnology Era: Penicillin in Australia, 1943β80|url=https://doi.org/10.1080/08109020802459306|journal=Prometheus|volume=26|issue=4|pages=317β333|doi=10.1080/08109020802459306|s2cid=143123783}}</ref><ref>{{cite book|last=Baldry|first=Peter|url=https://books.google.com/books?id=rvs8AAAAIAAJ|title=The Battle Against Bacteria: A Fresh Look|date=1976|publisher=CUP Archive|isbn=978-0-521-21268-7|pages=115}}</ref> The Penicillin Committee was created on 5 April 1943. The committee consisted of Weir as chairman, Fleming, Florey, Sir [[Percival Hartley]], Allison and representatives from pharmaceutical companies as members. The main goals were to produce penicillin rapidly in large quantities with collaboration of American companies, and to supply the drug exclusively for [[Allies of World War II|Allied armed forces]].<ref name=":0" /> By [[D-Day]] in 1944, enough penicillin had been produced to treat all the wounded of the Allied troops.<ref>{{cite journal|last=Richards|first=A. N.|date=1964|title=Production of penicillin in the United States (1941β1946)|url=https://pubmed.ncbi.nlm.nih.gov/14164615|journal=Nature|volume=201|issue=4918|pages=441β445|doi=10.1038/201441a0|pmid=14164615|bibcode=1964Natur.201..441R|s2cid=4296757}}</ref> ====Antibiotic resistance==== [[File:Staphylococcus aureus (AB Test).jpg|right|thumb|Modern antibiotics are tested using a method similar to Fleming's discovery.]] Fleming also discovered very early that bacteria developed [[antibiotic resistance]] whenever too little penicillin was used or when it was used for too short a period. Almroth Wright had predicted antibiotic resistance even before it was noticed during experiments. Fleming cautioned about the use of penicillin in his many speeches around the world. On 26 June 1945, he made the following cautionary statements: "the microbes are educated to resist penicillin and a host of penicillin-fast organisms is bred out ... In such cases the thoughtless person playing with penicillin is morally responsible for the death of the man who finally succumbs to infection with the penicillin-resistant organism. I hope this evil can be averted."<ref>{{cite journal|journal=Infection Control & Hospital Epidemiology|date=April 2012|title=Policy statement on antimicrobial stewardship by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), & the Pediatric Infectious Diseases Society (PIDS)|url= https://www.cambridge.org/core/services/aop-cambridge-core/content/view/48207C6BE27AB8C26F17672EF25F5808/S0195941700041175a.pdf/div-class-title-policy-statement-on-antimicrobial-stewardship-by-the-society-for-healthcare-epidemiology-of-america-shea-the-infectious-diseases-society-of-america-idsa-and-the-pediatric-infectious-diseases-society-pids-div.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://www.cambridge.org/core/services/aop-cambridge-core/content/view/48207C6BE27AB8C26F17672EF25F5808/S0195941700041175a.pdf/div-class-title-policy-statement-on-antimicrobial-stewardship-by-the-society-for-healthcare-epidemiology-of-america-shea-the-infectious-diseases-society-of-america-idsa-and-the-pediatric-infectious-diseases-society-pids-div.pdf |archive-date=9 October 2022 |url-status=live|volume=33|number=4|pages=322β327|pmid=22418625|doi=10.1086/665010|last1=Fishman |first1=Neil |author2=Infectious Diseases Society of America |author3=Pediatric Infectious Diseases Society |s2cid=24828623 }}</ref> He cautioned not to use penicillin unless there was a properly diagnosed reason for it to be used, and that if it were used, never to use too little, or for too short a period, since these are the circumstances under which bacterial resistance to antibiotics develops.<ref>{{cite journal|last=Rosenblatt-Farrell|first=Noah|date=2009|title=The Landscape of Antibiotic Resistance|journal=Environmental Health Perspectives|volume=117|issue=6|pages=244β150|doi=10.1289/ehp.117-a244|pmc=2702430|pmid=19590668}}</ref> It had been experimentally shown in 1942 that ''S. aureu''s could develop penicillin resistance under prolonged exposure.<ref>{{cite journal|last1=Rammelkamp|first1=Charles H.|last2=Maxon|first2=Thelma|date=1942|title=Resistance of Staphylococcus aureus to the Action of Penicillin.|url=https://journals.sagepub.com/doi/abs/10.3181/00379727-51-13986|journal=Proceedings of the Society for Experimental Biology and Medicine|volume=51|issue=3|pages=386β389|doi=10.3181/00379727-51-13986|s2cid=87530495}}</ref> Elaborating the possibility of penicillin resistance in clinical conditions in his Nobel Lecture, Fleming said:<blockquote>The time may come when penicillin can be bought by anyone in the shops. Then there is the danger that the ignorant man may easily underdose himself and by exposing his microbes to non-lethal quantities of the drug make them resistant.<ref name=":12" /></blockquote>It was around that time that the first clinical case of penicillin resistance was reported.<ref>{{cite journal|last=Plough|first=Harold H.|date=1945|title=Penicillin Resistance of Staphylococcus Aureus and its Clinical Implications|url=https://academic.oup.com/ajcp/article-lookup/doi/10.1093/ajcp/15.10.446|journal=American Journal of Clinical Pathology|volume=15|issue=10|pages=446β451|doi=10.1093/ajcp/15.10.446|pmid=21005048}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Alexander Fleming
(section)
Add topic