Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Active laser medium
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Cross-sections=== The simple medium can be characterized with [[cross section (physics)|effective cross-sections]] of [[Absorption (electromagnetic radiation)|absorption]] and [[Emission (electromagnetic radiation)|emission]] at frequencies <math>~\omega_{\rm p}~</math> and <math>~\omega_{\rm s}</math>. * Have <math>~N~</math> be concentration of active centers in the solid-state lasers. * Have <math>~N_1~</math> be concentration of active centers in the ground state. * Have <math>~N_2~</math> be concentration of excited centers. * Have <math>~N_1+N_2=N</math>. The relative concentrations can be defined as <math>~n_1=N_1/N~</math> and <math>~n_2=N_2/N</math>. The rate of transitions of an active center from the ground state to the excited state can be expressed like this: <math>~ W_{\rm u}=\frac{I_{\rm p}\sigma_{\rm ap}}{ \hbar \omega_{\rm p} }+\frac{I_{\rm s}\sigma_{\rm as}}{ \hbar \omega_{\rm s} } ~</math>. While the rate of transitions back to the ground state can be expressed like: <math>~W_{\rm d}=\frac{ I_{\rm p} \sigma_{\rm ep}}{ \hbar \omega_{\rm p} }+\frac{I_{\rm s}\sigma_{\rm es}}{ \hbar \omega_{\rm s} } +\frac{1}{\tau}~</math>, where <math>~\sigma_{\rm as} ~</math> and <math>~\sigma_{\rm ap} ~</math> are [[Absorption cross section|effective cross-sections]] of absorption at the frequencies of the signal and the pump, <math>~\sigma_{\rm es} ~</math> and <math>~\sigma_{\rm ep} ~</math> are the same for stimulated emission, and <math>~\frac{1}{\tau}~</math> is rate of the spontaneous decay of the upper level. Then, the kinetic equation for relative populations can be written as follows: <math>~ \frac {{\rm d}n_2} {{\rm d}t} = W_{\rm u} n_1 - W_{\rm d} n_2 </math>, <math>~ \frac{{\rm d}n_1}{{\rm d}t}=-W_{\rm u} n_1 + W_{\rm d} n_2 ~</math> However, these equations keep <math>~ n_1+n_2=1 ~</math>. The absorption <math>~ A ~</math> at the pump frequency and the gain <math>~ G ~</math> at the signal frequency can be written as follows: <math>~ A = N_1\sigma_{\rm pa} -N_2\sigma_{\rm pe} ~</math> and <math>~ G = N_2\sigma_{\rm se} -N_1\sigma_{\rm sa} ~</math>. ===Steady-state solution=== In many cases the gain medium works in a continuous-wave or [[quasi-continuous function|quasi-continuous]] regime, causing the time [[derivative]]s of populations to be negligible. The steady-state solution can be written: <math>~ n_2=\frac{W_{\rm u}}{W_{\rm u}+W_{\rm d}} ~</math>, <math>~ n_1=\frac{W_{\rm d}}{W_{\rm u}+W_{\rm d}}.</math> The dynamic saturation intensities can be defined: <math>~ I_{\rm po}=\frac{\hbar \omega_{\rm p}}{(\sigma_{\rm ap}+\sigma_{\rm ep})\tau} ~</math>, <math>~ I_{\rm so}=\frac{\hbar \omega_{\rm s}}{(\sigma_{\rm as}+\sigma_{\rm es})\tau} ~</math>. The absorption at strong signal: <math>~ A_0=\frac{ND}{\sigma_{\rm as}+\sigma_{\rm es}}~</math>. The gain at strong pump: <math>~ G_0=\frac{ND}{\sigma_{\rm ap}+\sigma_{\rm ep}}~</math>, where <math>~ D= \sigma_{\rm pa} \sigma_{\rm se} - \sigma_{\rm pe} \sigma_{\rm sa} ~</math> is determinant of cross-section. Gain never exceeds value <math>~G_0~</math>, and absorption never exceeds value <math>~A_0 U~</math>. At given intensities <math>~I_{\rm p}~</math>, <math>~I_{\rm s}~</math> of pump and signal, the gain and absorption can be expressed as follows: <math>~A=A_0\frac{U+s}{1+p+s}~</math>, <math>~G=G_0\frac{p-V}{1+p+s}~</math>, where <math>~p=I_{\rm p}/I_{\rm po}~</math>, <math>~s=I_{\rm s}/I_{\rm so}~</math>, <math>~U=\frac{(\sigma_{\rm as}+\sigma_{\rm es})\sigma_{\rm ap}}{D}~</math>, <math>~V=\frac{(\sigma_{\rm ap}+\sigma_{\rm ep})\sigma_{\rm as}}{D}~</math> .
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Active laser medium
(section)
Add topic