Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Topological group
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Cauchy prefilters and nets=== {{Main|Filters in topology|Net (mathematics)}} The general theory of [[uniform space]]s has its own definition of a "Cauchy prefilter" and "Cauchy net." For the canonical uniformity on <math>X,</math> these reduces down to the definition described below. Suppose <math>x_{\bull} = \left(x_i\right)_{i \in I}</math> is a net in <math>X</math> and <math>y_{\bull} = \left(y_j\right)_{j \in J}</math> is a net in <math>Y.</math> Make <math>I \times J</math> into a directed set by declaring <math>(i, j) \leq \left(i_2, j_2\right)</math> if and only if <math>i \leq i_2 \text{ and } j \leq j_2.</math> Then{{sfn|Narici|Beckenstein|2011|pp=47-66}} <math>x_{\bull} \times y_{\bull}: = \left(x_i, y_j\right)_{(i, j) \in I \times J}</math> denotes the '''product net'''. If <math>X = Y</math> then the image of this net under the addition map <math>X \times X \to X</math> denotes the '''sum''' of these two nets: <math display=block>x_{\bull} + y_{\bull}: = \left(x_i + y_j\right)_{(i, j) \in I \times J}</math> and similarly their '''difference''' is defined to be the image of the product net under the subtraction map: <math display=block>x_{\bull} - y_{\bull}: = \left(x_i - y_j\right)_{(i, j) \in I \times J}.</math> A [[Net (mathematics)|net]] <math>x_{\bull} = \left(x_i\right)_{i \in I}</math> in an additive topological group <math>X</math> is called a '''Cauchy net''' if{{sfn|Narici|Beckenstein|2011|p=48}} <math display=block>\left(x_i - x_j\right)_{(i, j) \in I \times I} \to 0 \text{ in } X</math> or equivalently, if for every neighborhood <math>N</math> of <math>0</math> in <math>X,</math> there exists some <math>i_0 \in I</math> such that <math>x_i - x_j \in N</math> for all indices <math>i, j \geq i_0.</math> A '''[[Cauchy sequence]]''' is a Cauchy net that is a sequence. If <math>B</math> is a subset of an additive group <math>X</math> and <math>N</math> is a set containing <math>0,</math> then<math>B</math> is said to be an '''<math>N</math>-small set''' or '''small of order <math>N</math>''' if <math>B - B \subseteq N.</math>{{sfn|Narici|Beckenstein|2011|pp=48-51}} A prefilter <math>\mathcal{B}</math> on an additive topological group <math>X</math> called a '''Cauchy prefilter''' if it satisfies any of the following equivalent conditions: <ol> <li><math>\mathcal{B} - \mathcal{B} \to 0</math> in <math>X,</math> where <math>\mathcal{B} - \mathcal{B} := \{B - C : B, C \in \mathcal{B}\}</math> is a prefilter.</li> <li><math>\{B - B : B \in \mathcal{B}\} \to 0</math> in <math>X,</math> where <math>\{B - B : B \in \mathcal{B}\}</math> is a prefilter equivalent to <math>\mathcal{B} - \mathcal{B}.</math></li> <li>For every neighborhood <math>N</math> of <math>0</math> in <math>X,</math> <math>\mathcal{B}</math> contains some <math>N</math>-small set (that is, there exists some <math>B \in \mathcal{B}</math> such that <math>B - B \subseteq N</math>).{{sfn|Narici|Beckenstein|2011|pp=48β51}}</li> </ol> and if <math>X</math> is commutative then also: <ol start=4> <li>For every neighborhood <math>N</math> of <math>0</math> in <math>X,</math> there exists some <math>B \in \mathcal{B}</math> and some <math>x \in X</math> such that <math>B \subseteq x + N.</math>{{sfn|Narici|Beckenstein|2011|pp=48-51}}</li> </ol> * It suffices to check any of the above condition for any given [[neighborhood basis]] of <math>0</math> in <math>X.</math> Suppose <math>\mathcal{B}</math> is a prefilter on a commutative topological group <math>X</math> and <math>x \in X.</math> Then <math>\mathcal{B} \to x</math> in <math>X</math> if and only if <math>x \in \operatorname{cl} \mathcal{B}</math> and <math>\mathcal{B}</math> is Cauchy.{{sfn|Narici|Beckenstein|2011|pp=47-66}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Topological group
(section)
Add topic