Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Testosterone
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Aggression and criminality {{anchor|Aggression}}{{anchor|Criminality}} ==== {{See also|Aggression#Testosterone|Biosocial criminology}} Most studies support a link between adult criminality and testosterone.<ref name="Armstrong_2022">{{cite journal |vauthors=Armstrong TA, Boisvert DL, Wells J, Lewis RH, Cooke EM, Woeckener M, Kavish N, Vietto N, Harper JM |date=November 2022 |title=Testosterone, cortisol, and criminal behavior in men and women |journal=Hormones and Behavior |volume=146 |pages=105260 |doi=10.1016/j.yhbeh.2022.105260 |pmid=36122515 |s2cid=252285821}}</ref><ref name="pmid1757712">{{cite journal | vauthors = Dabbs JM, Jurkovic GJ, Frady RL | title = Salivary testosterone and cortisol among late adolescent male offenders | journal = Journal of Abnormal Child Psychology | volume = 19 | issue = 4 | pages = 469β78 | date = August 1991 | pmid = 1757712 | doi = 10.1007/BF00919089 | s2cid = 647349 }}</ref><ref>{{cite web | vauthors = Barber N | date = 15 July 2009 | title = Sex, violence, and hormones: Why young men are horny and violent | url = https://www.psychologytoday.com/us/blog/the-human-beast/200907/sex-violence-and-hormones | work = Psychology Today | access-date = May 19, 2023 | archive-date = May 2, 2024 | archive-url = https://web.archive.org/web/20240502041019/https://www.psychologytoday.com/us/blog/the-human-beast/200907/sex-violence-and-hormones | url-status = live }}</ref><ref>{{cite journal | vauthors = Dabbs Jr JM, Carr TS, Frady RL, Riad JK | title = Testosterone, crime, and misbehavior among 692 male prison inmates. | journal = Personality and Individual Differences | date = May 1995 | volume = 18 | issue = 5 | pages = 627β633 | doi = 10.1016/0191-8869(94)00177-T }}</ref> Nearly all studies of juvenile delinquency and testosterone are not significant. Most studies have found testosterone to be associated with behaviors or personality traits linked with [[Antisocial personality disorder|antisocial behavior]]<ref name="pmid24631306">{{cite journal | vauthors = Welker KM, Lozoya E, Campbell JA, Neumann CS, CarrΓ© JM | title = Testosterone, cortisol, and psychopathic traits in men and women | journal = Physiology & Behavior | volume = 129 | issue = | pages = 230β6 | date = April 2014 | pmid = 24631306 | doi = 10.1016/j.physbeh.2014.02.057 | s2cid = 23683791 }}</ref> and [[alcoholism]]. Many studies{{Which|date=June 2023}} have been undertaken on the relationship between more general aggressive behavior, and feelings, and testosterone. About half of studies have found a relationship and about half, no relationship.<ref name="isbn0-12-373612-9">{{cite book | vauthors = Wright J, Ellis L, Beaver K | title = Handbook of crime correlates | url = https://archive.org/details/handbookcrimecor00elli | url-access = limited | publisher = Academic Press | location = San Diego | year = 2009 | pages =[https://archive.org/details/handbookcrimecor00elli/page/n8 208]β10 | isbn = 978-0-12-373612-3 }}</ref> Studies have found that testosterone facilitates aggression by modulating [[vasopressin]] receptors in the [[hypothalamus]].<ref>{{cite journal | vauthors = Delville Y, Mansour KM, Ferris CF | s2cid = 23870320 | title = Testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus | journal = Physiology & Behavior | volume = 60 | issue = 1 | pages = 25β9 | date = July 1996 | pmid = 8804638 | doi = 10.1016/0031-9384(95)02246-5 }}</ref> There are two theories on the role of testosterone in aggression and competition.<ref name="Archer_2006">{{cite journal |vauthors=Archer J |s2cid=26405251 |title=Testosterone and human aggression: an evaluation of the challenge hypothesis |journal=Neuroscience and Biobehavioral Reviews |volume=30 |issue=3 |pages=319β345 |date=2006 |pmid=16483890 |doi=10.1016/j.neubiorev.2004.12.007 |url=http://www.homepage.psy.utexas.edu/homepage/faculty/josephs/pdf_documents/Arch_Chall_NBR.pdf |archive-url=https://web.archive.org/web/20160109111144/http://www.homepage.psy.utexas.edu/HomePage/faculty/josephs/pdf_documents/Arch_Chall_NBR.pdf |archive-date=January 9, 2016 |url-status=dead}}</ref> The first is the [[challenge hypothesis]] which states that testosterone would increase during puberty, thus facilitating reproductive and competitive behavior which would include aggression.<ref name="Archer_2006" /> It is therefore the challenge of competition among males that facilitates aggression and violence.<ref name="Archer_2006" /> Studies conducted have found direct correlation between testosterone and dominance, especially among the most violent criminals in prison who had the highest testosterone.<ref name="Archer_2006" /> The same research found fathers (outside competitive environments) had the lowest testosterone levels compared to other males.<ref name="Archer_2006" /> The second theory is similar and known as "[[Evolutionary neuroandrogenic theory|evolutionary neuroandrogenic (ENA) theory]] of male aggression".<ref name = "Ellis_2015">{{cite journal |vauthors=Ellis L, Hoskin AW |title=The evolutionary neuroandrogenic theory of criminal behavior expanded |url=https://www.researchgate.net/publication/276151720 |journal=Aggression and Violent Behavior |pages=61β74 |volume=24 |doi=10.1016/j.avb.2015.05.002 |year=2015}}</ref><ref>{{cite journal |vauthors=Hoskin AW, Ellis L |title=Fetal Testosterone and Criminality: Test of Evolutionary Neuroandrogenic Theory |url=https://www.researchgate.net/publication/270007761 |journal=Criminology |pages=54β73 |volume=53 |issue=1 |doi=10.1111/1745-9125.12056 |year=2015}}</ref> Testosterone and other androgens have evolved to masculinize a brain to be competitive, even to the point of risking harm to the person and others. By doing so, individuals with masculinized brains as a result of pre-natal and adult life testosterone and androgens, enhance their resource acquiring abilities to survive, attract and copulate with mates as much as possible.<ref name="Ellis_2015" /> The masculinization of the brain is not just mediated by testosterone levels at the adult stage, but also testosterone exposure in the womb. Higher pre-natal testosterone indicated by a low [[digit ratio]] as well as adult testosterone levels increased risk of fouls or aggression among male players in a soccer game.<ref>{{cite journal |vauthors=Perciavalle V, Di Corrado D, Petralia MC, Gurrisi L, Massimino S, Coco M |title=The second-to-fourth digit ratio correlates with aggressive behavior in professional soccer players |journal=Molecular Medicine Reports |volume=7 |issue=6 |pages=1733β1738 |date=Jun 2013 |pmid=23588344 |pmc=3694562 |doi=10.3892/mmr.2013.1426}}</ref> Studies have found higher pre-natal testosterone or lower digit ratio to be correlated with higher aggression.<ref name="Bailey & Hurd 2005">{{cite journal |vauthors=Bailey AA, Hurd PL |s2cid=16606349 |title=Finger length ratio (2D:4D) correlates with physical aggression in men but not in women |journal=Biological Psychology |volume=68 |issue=3 |pages=215β222 |date=Mar 2005 |pmid=15620791 |doi=10.1016/j.biopsycho.2004.05.001}}<br/>Lay summary: {{cite web |title=Finger Length Predicts Aggression in Men |url=http://www.livescience.com/193-finger-length-predicts-aggression-men.html |date=2 March 2005 |website=[[LiveScience]] |access-date=December 30, 2015 |archive-date=September 29, 2017 |archive-url=https://web.archive.org/web/20170929092006/https://www.livescience.com/193-finger-length-predicts-aggression-men.html |url-status=live }}</ref><ref>{{cite journal |vauthors=Benderlioglu Z, Nelson RJ |s2cid=17464657 |title=Digit length ratios predict reactive aggression in women, but not in men |journal=Hormones and Behavior |volume=46 |issue=5 |pages=558β564 |date=Dec 2004 |pmid=15555497 |doi=10.1016/j.yhbeh.2004.06.004}}</ref><ref>{{cite journal |vauthors=Liu J, Portnoy J, Raine A |title=Association between a marker for prenatal testosterone exposure and externalizing behavior problems in children |journal=Development and Psychopathology |volume=24 |issue=3 |pages=771β782 |date=August 2012 |pmid=22781854 |pmc=4247331 |doi=10.1017/S0954579412000363}}</ref><ref>{{cite journal |vauthors=Butovskaya M, Burkova V, Karelin D, Fink B |title=Digit ratio (2D:4D), aggression, and dominance in the Hadza and the Datoga of Tanzania |journal=American Journal of Human Biology |volume=27 |issue=5 |pages=620β627 |date=2015-10-01 |pmid=25824265 |doi=10.1002/ajhb.22718 |s2cid=205303673}}</ref><ref>{{cite journal |vauthors=Joyce CW, Kelly JC, Chan JC, Colgan G, O'Briain D, Mc Cabe JP, Curtin W |title=Second to fourth digit ratio confirms aggressive tendencies in patients with boxers fractures |journal=Injury |volume=44 |issue=11 |pages=1636β1639 |date=Nov 2013 |pmid=23972912 |doi=10.1016/j.injury.2013.07.018}}</ref> The rise in testosterone during competition predicted aggression in males, but not in females.<ref>{{cite journal |vauthors=CarrΓ© JM, Olmstead NA |s2cid=32112035 |title=Social neuroendocrinology of human aggression: examining the role of competition-induced testosterone dynamics |journal=Neuroscience |volume=286 |pages=171β186 |date=Feb 2015 |pmid=25463514 |doi=10.1016/j.neuroscience.2014.11.029 |url=http://carrelab.nipissingu.ca/wp-content/uploads/sites/32/2014/10/Carre-Olmstead-2015.pdf |access-date=December 30, 2015 |archive-date=January 26, 2016 |archive-url=https://web.archive.org/web/20160126080124/http://carrelab.nipissingu.ca/wp-content/uploads/sites/32/2014/10/Carre-Olmstead-2015.pdf |url-status=dead }}</ref> Subjects who interacted with handguns and an experimental game showed rise in testosterone and aggression.<ref>{{cite journal |vauthors=Klinesmith J, Kasser T, McAndrew FT |s2cid=33952211 |title=Guns, testosterone, and aggression: an experimental test of a mediational hypothesis |journal=Psychological Science |volume=17 |issue=7 |pages=568β571 |date=July 2006 |pmid=16866740 |doi=10.1111/j.1467-9280.2006.01745.x}}</ref> Natural selection might have evolved males to be more sensitive to competitive and status challenge situations, and that the interacting roles of testosterone are the essential ingredient for aggressive behaviour in these situations.<ref>{{Cite journal|title=The Interacting Roles of Testosterone and Challenges to Status in Human Male Aggression|vauthors=Mcandrew FT|date=2009|journal=Aggression and Violent Behavior|doi=10.1016/j.avb.2009.04.006|volume=14|issue=5|pages=330β335|url=http://faculty.knox.edu/fmcandre/avb_506.pdf|access-date=December 30, 2015|archive-date=November 29, 2020|archive-url=https://web.archive.org/web/20201129104954/http://faculty.knox.edu/fmcandre/avb_506.pdf|url-status=live}}</ref> Testosterone mediates attraction to cruel and violent cues in men by promoting extended viewing of violent stimuli.<ref>{{cite journal |vauthors=Weierstall R, Moran J, Giebel G, Elbert T |title=Testosterone reactivity and identification with a perpetrator or a victim in a story are associated with attraction to violence-related cues |journal=International Journal of Law and Psychiatry |volume=37 |issue=3 |pages=304β312 |date=2014-05-01 |pmid=24367977 |doi=10.1016/j.ijlp.2013.11.016 |url=https://kops.uni-konstanz.de/bitstream/123456789/29513/1/Weierstall_0-269427.pdf |access-date=May 2, 2024 |archive-date=May 2, 2024 |archive-url=https://web.archive.org/web/20240502034815/https://kops.uni-konstanz.de/bitstream/123456789/29513/1/Weierstall_0-269427.pdf |url-status=live }}</ref> Testosterone-specific structural brain characteristic can predict aggressive behaviour in individuals.<ref>{{cite journal |vauthors=Nguyen TV, McCracken JT, Albaugh MD, Botteron KN, Hudziak JJ, Ducharme S |title=A testosterone-related structural brain phenotype predicts aggressive behavior from childhood to adulthood |journal=Psychoneuroendocrinology |volume=63 |pages=109β118 |date=Jan 2016 |pmid=26431805 |pmc=4695305 |doi=10.1016/j.psyneuen.2015.09.021}}</ref> The ''Annals of the New York Academy of Sciences'' has found anabolic steroid use (which increases testosterone) to be higher in teenagers, and this was associated with increased violence.<ref>{{cite journal | vauthors = McGinnis MY | title = Anabolic androgenic steroids and aggression: studies using animal models | journal = Annals of the New York Academy of Sciences | volume = 1036 | pages = 399β415 | date = Dec 2004 | issue = 1 | pmid = 15817752 | doi = 10.1196/annals.1330.024 | bibcode = 2004NYASA1036..399M | s2cid = 36368056 }}</ref> Studies have found administered testosterone to increase verbal aggression and anger in some participants.<ref>{{cite journal | vauthors = von der PB, Sarkola T, Seppa K, Eriksson CJ | title = Testosterone, 5 alpha-dihydrotestosterone and cortisol in men with and without alcohol-related aggression | journal = Journal of Studies on Alcohol | volume = 63 | issue = 5 | pages = 518β26 | date = Sep 2002 | pmid = 12380846 | doi=10.15288/jsa.2002.63.518}}</ref> A few studies indicate that the testosterone derivative [[estradiol]] might play an important role in male aggression.<ref name="isbn0-12-373612-9"/><ref>Goldman D, Lappalainen J, Ozaki N. Direct analysis of candidate genes in impulsive disorders. In: Bock G, Goode J, eds. Genetics of Criminal and Antisocial Behaviour. Ciba Foundation Symposium 194. Chichester: John Wiley & Sons; 1996.</ref><ref>{{cite journal | vauthors = Coccaro E | year = 1996 | title = Neurotransmitter correlates of impulsive aggression in humans. In: Ferris C, Grisso T, eds. Understanding Aggressive Behaviour inn Children | journal = Annals of the New York Academy of Sciences | volume = 794 | issue = 1| pages = 82β89 | doi=10.1111/j.1749-6632.1996.tb32511.x| pmid = 8853594 | bibcode = 1996NYASA.794...82C | s2cid = 33226665 }}</ref><ref name="pmid9253313">{{cite journal | vauthors = Finkelstein JW, Susman EJ, Chinchilli VM, Kunselman SJ, D'Arcangelo MR, Schwab J, Demers LM, Liben LS, Lookingbill G, Kulin HE | title = Estrogen or testosterone increases self-reported aggressive behaviors in hypogonadal adolescents | journal = The Journal of Clinical Endocrinology & Metabolism| volume = 82 | issue = 8 | pages = 2433β38 | year = 1997 | pmid = 9253313 | doi = 10.1210/jcem.82.8.4165 | doi-access = free }}</ref> Estradiol is known to correlate with aggression in male mice.<ref name="pmid18280561">{{cite journal | vauthors = Soma KK, Scotti MA, Newman AE, Charlier TD, Demas GE | s2cid = 32650274 | title = Novel mechanisms for neuroendocrine regulation of aggression | journal = Frontiers in Neuroendocrinology | volume = 29 | issue = 4 | pages = 476β89 | date = Oct 2008 | pmid = 18280561 | doi = 10.1016/j.yfrne.2007.12.003 }}</ref> Moreover, the conversion of testosterone to estradiol regulates male aggression in [[Old World sparrow|sparrows]] during breeding season.<ref name="pmid11016791">{{cite journal | vauthors = Soma KK, Sullivan KA, Tramontin AD, Saldanha CJ, Schlinger BA, Wingfield JC | s2cid = 23990605 | title = Acute and chronic effects of an aromatase inhibitor on territorial aggression in breeding and nonbreeding male song sparrows | journal = Journal of Comparative Physiology A | volume = 186 | issue = 7β8 | pages = 759β69 | year = 2000 | pmid = 11016791 | doi = 10.1007/s003590000129 }}</ref> Rats who were given anabolic steroids that increase testosterone were also more physically aggressive to provocation as a result of "threat sensitivity".<ref>{{cite journal | vauthors = McGinnis MY, Lumia AR, Breuer ME, Possidente B | s2cid = 29969145 | title = Physical provocation potentiates aggression in male rats receiving anabolic androgenic steroids | journal = Hormones and Behavior | volume = 41 | issue = 1 | pages = 101β10 | date = Feb 2002 | pmid = 11863388 | doi = 10.1006/hbeh.2001.1742 }}</ref> The relationship between testosterone and aggression may also function indirectly, as it has been proposed that testosterone does not amplify tendencies towards aggression, but rather amplifies whatever tendencies will allow an individual to maintain social status when challenged. In most animals, aggression is the means of maintaining social status. However, humans have multiple ways of obtaining status. This could explain why some studies find a link between testosterone and pro-social behaviour, if pro-social behaviour is rewarded with social status. Thus the link between testosterone and aggression and violence is due to these being rewarded with social status.<ref name="pmid30619017">{{cite journal | vauthors = Sapolsky RM | title = Doubled-Edged Swords in the Biology of Conflict | journal = Frontiers in Psychology | volume = 9 | pages = 2625 | date = 2018 | pmid = 30619017 | pmc = 6306482 | doi = 10.3389/fpsyg.2018.02625 | doi-access = free }}</ref> The relationship may also be one of a "permissive effect" whereby testosterone does elevate aggression levels, but only in the sense of allowing average aggression levels to be maintained; chemically or physically castrating the individual will reduce aggression levels (though not eliminate them) but the individual only needs a small-level of pre-castration testosterone to have aggression levels to return to normal, which they will remain at even if additional testosterone is added. Testosterone may also simply exaggerate or amplify existing aggression; for example, chimpanzees who receive testosterone increases become more aggressive to chimps lower than them in the social hierarchy, but will still be submissive to chimps higher than them. Testosterone thus does not make the chimpanzee indiscriminately aggressive, but instead amplifies his pre-existing aggression towards lower-ranked chimps.<ref>{{cite book | vauthors = Sapolsky RM | title = The trouble with testosterone. | location = New York | publisher = Simon and Schuster | date = 1998 | pages = 153β55 | isbn = 978-0-684-83891-5 }}</ref> In humans, testosterone appears more to promote status-seeking and social dominance than simply increasing physical aggression. When controlling for the effects of belief in having received testosterone, women who have received testosterone make fairer offers than women who have not received testosterone.<ref name="pmid21616702">{{cite journal | vauthors = Eisenegger C, Haushofer J, Fehr E | title = The role of testosterone in social interaction | journal = Trends in Cognitive Sciences | volume = 15 | issue = 6 | pages = 263β71 | date = June 2011 | pmid = 21616702 | doi = 10.1016/j.tics.2011.04.008 | s2cid = 9554219 | url = http://www.zora.uzh.ch/id/eprint/58008/1/Testosterone_social_interaction_revision_%2812_Apr_11%29.pdf | access-date = December 22, 2020 | archive-date = January 22, 2021 | archive-url = https://web.archive.org/web/20210122153257/https://www.zora.uzh.ch/id/eprint/58008/1/Testosterone_social_interaction_revision_%2812_Apr_11%29.pdf | url-status = live }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Testosterone
(section)
Add topic