Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Tensor product
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Eigenconfigurations of tensors == Square [[Matrix (mathematics)|matrices]] <math>A</math> with entries in a [[Field (mathematics)|field]] <math>K</math> represent [[linear map]]s of [[vector space]]s, say {{tmath|1= K^n \to K^n }}, and thus linear maps <math>\psi : \mathbb{P}^{n-1} \to \mathbb{P}^{n-1}</math> of [[projective spaces]] over {{tmath|1= K }}. If <math>A</math> is [[Invertible matrix|nonsingular]] then <math>\psi</math> is [[well-defined]] everywhere, and the [[Eigenvalues and eigenvectors|eigenvectors]] of <math>A</math> correspond to the fixed points of {{tmath|1= \psi }}. The ''eigenconfiguration'' of <math>A</math> consists of <math>n</math> points in {{tmath|1= \mathbb{P}^{n-1} }}, provided <math>A</math> is generic and <math>K</math> is [[Algebraically closed field|algebraically closed]]. The fixed points of nonlinear maps are the eigenvectors of tensors. Let <math>A = (a_{i_1 i_2 \cdots i_d})</math> be a <math>d</math>-dimensional tensor of format <math>n \times n \times \cdots \times n</math> with entries <math>(a_{i_1 i_2 \cdots i_d})</math> lying in an algebraically closed field <math>K</math> of [[Characteristic (algebra)|characteristic]] zero. Such a tensor <math>A \in (K^{n})^{\otimes d}</math> defines [[Morphism of algebraic varieties|polynomial maps]] <math>K^n \to K^n</math> and <math>\mathbb{P}^{n-1} \to \mathbb{P}^{n-1}</math> with coordinates: <math display="block">\psi_i(x_1, \ldots, x_n) = \sum_{j_2=1}^n \sum_{j_3=1}^n \cdots \sum_{j_d = 1}^n a_{i j_2 j_3 \cdots j_d} x_{j_2} x_{j_3}\cdots x_{j_d} \;\; \mbox{for } i = 1, \ldots, n</math> Thus each of the <math>n</math> coordinates of <math>\psi</math> is a [[homogeneous polynomial]] <math>\psi_i</math> of degree <math>d-1</math> in {{tmath|1= \mathbf{x} = \left(x_1, \ldots, x_n\right) }}. The eigenvectors of <math>A</math> are the solutions of the constraint: <math display="block">\mbox{rank} \begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ \psi_1(\mathbf{x}) & \psi_2(\mathbf{x}) & \cdots & \psi_n(\mathbf{x}) \end{pmatrix} \leq 1 </math> and the eigenconfiguration is given by the [[Algebraic variety|variety]] of the <math>2 \times 2</math> [[Minor (linear algebra)|minors]] of this matrix.<ref>{{cite arXiv |last1=Abo |first1=H. |last2=Seigal |first2=A. |author2-link=Anna Seigal |last3=Sturmfels |first3=B. |author3-link=Bernd Sturmfels |title=Eigenconfigurations of Tensors |date=2015 |class=math.AG |eprint=1505.05729 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Tensor product
(section)
Add topic