Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
String theory
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Particle physics === The currently accepted theory describing elementary particles and their interactions is known as the [[standard model of particle physics]]. This theory provides a unified description of three of the fundamental forces of nature: electromagnetism and the strong and weak nuclear forces. Despite its remarkable success in explaining a wide range of physical phenomena, the standard model cannot be a complete description of reality. This is because the standard model fails to incorporate the force of gravity and because of problems such as the [[hierarchy problem]] and the inability to explain the structure of fermion masses or dark matter. String theory has been used to construct a variety of models of particle physics going beyond the standard model. Typically, such models are based on the idea of compactification. Starting with the ten- or eleven-dimensional spacetime of string or M-theory, physicists postulate a shape for the extra dimensions. By choosing this shape appropriately, they can construct models roughly similar to the standard model of particle physics, together with additional undiscovered particles.<ref name=Candelas1985/> One popular way of deriving realistic physics from string theory is to start with the heterotic theory in ten dimensions and assume that the six extra dimensions of spacetime are shaped like a six-dimensional Calabi–Yau manifold. Such compactifications offer many ways of extracting realistic physics from string theory.<ref>{{cite arXiv|last1=Cvetic|first1=M|authorlink1=Mirjam Cvetič|last2=Halverson|first2=J.|authorlink2=|last3=Shiu|first3=G.|authorlink3=Gary Shiu|last4=Taylor|first4=W.|authorlink4=|date=2022|title=Snowmass White Paper: String Theory and Particle Physics|pages=|arxiv=2204.01742}}</ref> Other similar methods can be used to construct realistic or semi-realistic models of our four-dimensional world based on M-theory.<ref>[[#Yau|Yau and Nadis]], pp. 147–150</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
String theory
(section)
Add topic