Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Singular value decomposition
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Nearest orthogonal matrix=== It is possible to use the SVD of a square matrix {{tmath|\mathbf A}} to determine the [[orthogonal matrix]] {{tmath|\mathbf O}} closest to {{tmath|\mathbf A.}} The closeness of fit is measured by the [[Frobenius norm]] of {{tmath|\mathbf O - \mathbf A.}} The solution is the product {{tmath|\mathbf U \mathbf V^*.}}<ref>[http://www.wou.edu/~beavers/Talks/Willamette1106.pdf The Singular Value Decomposition in Symmetric (Lowdin) Orthogonalization and Data Compression]</ref> This intuitively makes sense because an orthogonal matrix would have the decomposition {{tmath|\mathbf U \mathbf I \mathbf V^*}} where {{tmath|\mathbf I}} is the identity matrix, so that if {{tmath|\mathbf A {{=}} \mathbf U \mathbf \Sigma \mathbf V^*}} then the product {{tmath|\mathbf A {{=}} \mathbf U \mathbf V^*}} amounts to replacing the singular values with ones. Equivalently, the solution is the unitary matrix {{tmath|\mathbf R {{=}} \mathbf U \mathbf V^*}} of the Polar Decomposition <math>\mathbf M = \mathbf R \mathbf P = \mathbf P' \mathbf R</math> in either order of stretch and rotation, as described above. A similar problem, with interesting applications in [[shape analysis (digital geometry)|shape analysis]], is the [[orthogonal Procrustes problem]], which consists of finding an orthogonal matrix {{tmath|\mathbf O}} which most closely maps {{tmath|\mathbf A}} to {{tmath|\mathbf B.}} Specifically, <math display=block> \mathbf{O} = \underset\Omega\operatorname{argmin} \|\mathbf{A}\boldsymbol{\Omega} - \mathbf{B}\|_F \quad\text{subject to}\quad \boldsymbol{\Omega}^\operatorname{T}\boldsymbol{\Omega} = \mathbf{I}, </math> where <math>\| \cdot \|_F</math> denotes the Frobenius norm. This problem is equivalent to finding the nearest orthogonal matrix to a given matrix <math>\mathbf M = \mathbf A^\operatorname{T} \mathbf B</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Singular value decomposition
(section)
Add topic