Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Normal distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Maximum entropy === Of all probability distributions over the reals with a specified finite mean {{tmath|\mu}} and finite variance {{tmath|\sigma^2}}, the normal distribution <math display=inline>N(\mu,\sigma^2)</math> is the one with [[Maximum entropy probability distribution|maximum entropy]].<ref>{{harvtxt |Cover |Thomas |2006 |p=254 }}</ref> To see this, let {{tmath|X}} be a [[continuous random variable]] with [[probability density]] {{tmath|f(x)}}. The entropy of {{tmath|X}} is defined as<ref>{{cite book|last1=Williams|first1=David|title=Weighing the odds : a course in probability and statistics|url=https://archive.org/details/weighingoddscour00will|url-access=limited|date=2001|publisher=Cambridge Univ. Press|location=Cambridge [u.a.]|isbn=978-0-521-00618-7|pages=[https://archive.org/details/weighingoddscour00will/page/n219 197]β199|edition=Reprinted.}}</ref><ref>{{cite book|last1=Smith|first1=JosΓ© M. Bernardo; Adrian F. M.|title=Bayesian theory|url=https://archive.org/details/bayesiantheory00bern_963|url-access=limited|date=2000|publisher=Wiley|location=Chichester [u.a.]|isbn=978-0-471-49464-5|pages=[https://archive.org/details/bayesiantheory00bern_963/page/n224 209], 366|edition=Reprint}}</ref><ref>O'Hagan, A. (1994) ''Kendall's Advanced Theory of statistics, Vol 2B, Bayesian Inference'', Edward Arnold. {{isbn|0-340-52922-9}} (Section 5.40)</ref> <math display=block> H(X) = - \int_{-\infty}^\infty f(x)\ln f(x)\, dx\,, </math> where <math display=inline>f(x)\log f(x)</math> is understood to be zero whenever {{tmath|1=f(x)=0}}. This functional can be maximized, subject to the constraints that the distribution is properly normalized and has a specified mean and variance, by using [[variational calculus]]. A function with three [[Lagrange multipliers]] is defined: <math display=block> L=-\int_{-\infty}^\infty f(x)\ln f(x)\,dx-\lambda_0\left(1-\int_{-\infty}^\infty f(x)\,dx\right)-\lambda_1\left(\mu-\int_{-\infty}^\infty f(x)x\,dx\right)-\lambda_2\left(\sigma^2-\int_{-\infty}^\infty f(x)(x-\mu)^2\,dx\right)\,. </math> At maximum entropy, a small variation <math display=inline>\delta f(x)</math> about <math display=inline>f(x)</math> will produce a variation <math display=inline>\delta L</math> about {{tmath|L}} which is equal to 0: <math display=block> 0=\delta L=\int_{-\infty}^\infty \delta f(x)\left(-\ln f(x) -1+\lambda_0+\lambda_1 x+\lambda_2(x-\mu)^2\right)\,dx\,. </math> Since this must hold for any small {{tmath|\delta f(x)}}, the factor multiplying {{tmath|\delta f(x)}} must be zero, and solving for {{tmath|f(x)}} yields: <math display=block>f(x)=\exp\left(-1+\lambda_0+\lambda_1 x+\lambda_2(x-\mu)^2\right)\,.</math> The Lagrange constraints that {{tmath|f(x)}} is properly normalized and has the specified mean and variance are satisfied if and only if {{tmath|\lambda_0}}, {{tmath|\lambda_1}}, and {{tmath|\lambda_2}} are chosen so that <math display=block> f(x)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\,. </math> The entropy of a normal distribution <math display=inline>X \sim N(\mu,\sigma^2)</math> is equal to <math display=block> H(X)=\tfrac{1}{2}(1+\ln 2\sigma^2\pi)\,, </math> which is independent of the mean {{tmath|\mu}}.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Normal distribution
(section)
Add topic