Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Neuron
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==All-or-none principle== [[File:All-or-none law en.svg|thumb|318x318px|As long as the stimulus reaches the threshold, the full response will be given. A larger stimulus does not result in a larger response, and vice versa.<ref name="Kalat, James W-2016">{{Cite book |last=Kalat, James W |title=Biological psychology |publisher=Cengage Learning |year=2016 |isbn=9781305105409 |edition=12 |location=Australia |oclc=898154491}}</ref>{{Rp|31}}]] {{Main|All-or-none law}} The conduction of nerve impulses is an example of an [[All-or-none law|all-or-none]] response. In other words, if a neuron responds at all, then it must respond completely. Greater intensity of stimulation, like brighter image/louder sound, does not produce a stronger signal but can increase firing frequency.<ref name="Kalat, James W-2016" />{{Rp|31}} Receptors respond in different ways to stimuli. Slowly adapting or [[tonic (physiology)|tonic receptors]] respond to a steady stimulus and produce a steady rate of firing. Tonic receptors most often respond to increased stimulus intensity by increasing their firing frequency, usually as a power function of stimulus plotted against impulses per second. This can be likened to an intrinsic property of light where greater intensity of a specific frequency (color) requires more photons, as the photons can not become "stronger" for a specific frequency. Other receptor types include quickly adapting or phasic receptors, where firing decreases or stops with a steady stimulus; examples include [[Human skin|skin]] which, when touched causes neurons to fire, but if the object maintains even pressure, the neurons stop firing. The neurons of the skin and muscles that are responsive to pressure and vibration have filtering accessory structures that aid their function. The [[pacinian corpuscle]] is one such structure. It has concentric layers like an onion, which form around the axon terminal. When pressure is applied and the corpuscle is deformed, mechanical stimulus is transferred to the axon, which fires. If the pressure is steady, the stimulus ends; thus, these neurons typically respond with a transient depolarization during the initial deformation and again when the pressure is removed, which causes the corpuscle to change shape again. Other types of adaptation are important in extending the function of several other neurons.<ref>{{cite book | last1 = Eckert | first1 = Roger | last2 = Randall | first2 = David | name-list-style = vanc | title = Animal physiology: mechanisms and adaptations | year = 1983 | publisher = W.H. Freeman | location = San Francisco | isbn = 978-0-7167-1423-1 | page = [https://archive.org/details/animalphysiology0000ecke/page/239 239] | url = https://archive.org/details/animalphysiology0000ecke/page/239 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Neuron
(section)
Add topic