Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Moment of inertia
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Kinetic energy === The kinetic energy of a rigid system of particles can be formulated in terms of the [[center of mass]] and a matrix of mass moments of inertia of the system. Let the system of <math>n</math> particles <math>P_i, i = 1, \dots, n</math> be located at the coordinates <math>\mathbf{r}_i</math> with velocities <math>\mathbf{v}_i</math>, then the kinetic energy is<ref name="Marion 1995"/><ref name="Kane"/> <math display="block"> E_\text{K} = \frac{1}{2} \sum_{i=1}^n m_i \mathbf{v}_i \cdot \mathbf{v}_i = \frac{1}{2} \sum_{i=1}^n m_i \left(\boldsymbol{\omega} \times \Delta\mathbf{r}_i + \mathbf{V}_\mathbf{C}\right) \cdot \left(\boldsymbol{\omega} \times \Delta\mathbf{r}_i + \mathbf{V}_\mathbf{C}\right), </math> where <math>\Delta\mathbf{r}_i = \mathbf{r}_i - \mathbf{C}</math> is the position vector of a particle relative to the center of mass. This equation expands to yield three terms <math display="block"> E_\text{K} = \frac{1}{2}\left(\sum_{i=1}^n m_i \left(\boldsymbol{\omega} \times \Delta\mathbf{r}_i\right) \cdot \left(\boldsymbol{\omega} \times \Delta\mathbf{r}_i\right)\right) + \left(\sum_{i=1}^n m_i \mathbf{V}_\mathbf{C} \cdot \left(\boldsymbol{\omega} \times \Delta\mathbf{r}_i\right)\right) + \frac{1}{2}\left(\sum_{i=1}^n m_i \mathbf{V}_\mathbf{C} \cdot \mathbf{V}_\mathbf{C}\right). </math> Since the center of mass is defined by <math> \sum_{i=1}^n m_i \Delta\mathbf{r}_i =0</math> , the second term in this equation is zero. Introduce the skew-symmetric matrix <math>[\Delta\mathbf{r}_i]</math> so the kinetic energy becomes <math display="block">\begin{align} E_\text{K} &= \frac{1}{2}\left(\sum_{i=1}^n m_i \left(\left[\Delta\mathbf{r}_i\right] \boldsymbol{\omega}\right) \cdot \left(\left[\Delta\mathbf{r}_i\right] \boldsymbol{\omega}\right)\right) + \frac{1}{2}\left(\sum_{i=1}^n m_i\right) \mathbf{V}_\mathbf{C} \cdot \mathbf{V}_\mathbf{C} \\ &= \frac{1}{2}\left(\sum_{i=1}^n m_i \left(\boldsymbol{\omega}^\mathsf{T}\left[\Delta\mathbf{r}_i\right]^\mathsf{T} \left[\Delta\mathbf{r}_i\right] \boldsymbol{\omega}\right)\right) + \frac{1}{2}\left(\sum_{i=1}^n m_i\right) \mathbf{V}_\mathbf{C} \cdot \mathbf{V}_\mathbf{C} \\ &= \frac{1}{2}\boldsymbol{\omega} \cdot \left(-\sum_{i=1}^n m_i \left[\Delta\mathbf{r}_i\right]^2\right) \boldsymbol{\omega} + \frac{1}{2}\left(\sum_{i=1}^n m_i\right) \mathbf{V}_\mathbf{C} \cdot \mathbf{V}_\mathbf{C}. \end{align}</math> Thus, the kinetic energy of the rigid system of particles is given by <math display="block">E_\text{K} = \frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{I}_\mathbf{C} \boldsymbol{\omega} + \frac{1}{2} M\mathbf{V}_\mathbf{C}^2.</math> where <math>\mathbf{I_C}</math> is the inertia matrix relative to the center of mass and <math>M</math> is the total mass.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Moment of inertia
(section)
Add topic