Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Discrete cosine transform
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== DCT V-VIII === DCTs of types IβIV treat both boundaries consistently regarding the point of symmetry: they are even/odd around either a data point for both boundaries or halfway between two data points for both boundaries. By contrast, DCTs of types V-VIII imply boundaries that are even/odd around a data point for one boundary and halfway between two data points for the other boundary. In other words, DCT types IβIV are equivalent to real-even DFTs of even order (regardless of whether <math> N </math> is even or odd), since the corresponding DFT is of length <math> 2(N-1) </math> (for DCT-I) or <math> 4 N </math> (for DCT-II & III) or <math> 8 N </math> (for DCT-IV). The four additional types of discrete cosine transform<ref>{{harvnb|Martucci|1994}}</ref> correspond essentially to real-even DFTs of logically odd order, which have factors of <math> N \pm {1}/{2} </math> in the denominators of the cosine arguments. However, these variants seem to be rarely used in practice. One reason, perhaps, is that [[Fast Fourier transform|FFT]] algorithms for odd-length DFTs are generally more complicated than [[Fast Fourier transform|FFT]] algorithms for even-length DFTs (e.g. the simplest radix-2 algorithms are only for even lengths), and this increased intricacy carries over to the DCTs as described below. (The trivial real-even array, a length-one DFT (odd length) of a single number {{mvar|a}} , corresponds to a DCT-V of length <math> N = 1 .</math>)
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Discrete cosine transform
(section)
Add topic