Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Bernoulli number
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Connection with Worpitzky numbers === The definition to proceed with was developed by Julius Worpitzky in 1883. Besides elementary arithmetic only the factorial function {{math|''n''!}} and the power function {{math|''k<sup>m</sup>''}} is employed. The signless Worpitzky numbers are defined as : <math> W_{n,k}=\sum_{v=0}^k (-1)^{v+k} (v+1)^n \frac{k!}{v!(k-v)!} . </math> They can also be expressed through the [[Stirling numbers of the second kind]] : <math> W_{n,k}=k! \left\{ {n+1\atop k+1} \right\}.</math> A Bernoulli number is then introduced as an inclusion–exclusion sum of Worpitzky numbers weighted by the [[Harmonic progression (mathematics)|harmonic sequence]] 1, {{sfrac|1|2}}, {{sfrac|1|3}}, ... : <math> B_{n}=\sum_{k=0}^n (-1)^k \frac{W_{n,k}}{k+1}\ =\ \sum_{k=0}^n \frac{1}{k+1} \sum_{v=0}^k (-1)^v (v+1)^n {k \choose v}\ . </math> :{{math|1=''B''<sub>0</sub> = 1}} :{{math|1=''B''<sub>1</sub> = 1 − {{sfrac|1|2}}}} :{{math|1=''B''<sub>2</sub> = 1 − {{sfrac|3|2}} + {{sfrac|2|3}}}} :{{math|1=''B''<sub>3</sub> = 1 − {{sfrac|7|2}} + {{sfrac|12|3}} − {{sfrac|6|4}}}} :{{math|1=''B''<sub>4</sub> = 1 − {{sfrac|15|2}} + {{sfrac|50|3}} − {{sfrac|60|4}} + {{sfrac|24|5}}}} :{{math|1=''B''<sub>5</sub> = 1 − {{sfrac|31|2}} + {{sfrac|180|3}} − {{sfrac|390|4}} + {{sfrac|360|5}} − {{sfrac|120|6}}}} :{{math|1=''B''<sub>6</sub> = 1 − {{sfrac|63|2}} + {{sfrac|602|3}} − {{sfrac|2100|4}} + {{sfrac|3360|5}} − {{sfrac|2520|6}} + {{sfrac|720|7}}}} This representation has {{math|''B''{{su|p=+|b=1}} {{=}} +{{sfrac|1|2}}}}. Consider the sequence {{math|''s<sub>n</sub>''}}, {{math|''n'' ≥ 0}}. From Worpitzky's numbers {{OEIS2C|id=A028246}}, {{OEIS2C|id=A163626}} applied to {{math|''s''<sub>0</sub>, ''s''<sub>0</sub>, ''s''<sub>1</sub>, ''s''<sub>0</sub>, ''s''<sub>1</sub>, ''s''<sub>2</sub>, ''s''<sub>0</sub>, ''s''<sub>1</sub>, ''s''<sub>2</sub>, ''s''<sub>3</sub>, ...}} is identical to the Akiyama–Tanigawa transform applied to {{math|''s<sub>n</sub>''}} (see [[#Connection with Stirling numbers of the first kind|Connection with Stirling numbers of the first kind]]). This can be seen via the table: :{| style="text-align:center" |+ '''Identity of<br/>Worpitzky's representation and Akiyama–Tanigawa transform''' |- |1|| || || || || ||0||1|| || || || ||0||0||1|| || || ||0||0||0||1|| || ||0||0||0||0||1|| |- |1||−1|| || || || ||0||2||−2|| || || ||0||0||3||−3|| || ||0||0||0||4||−4|| || || || || || || |- |1||−3||2|| || || ||0||4||−10||6|| || ||0||0||9||−21||12|| || || || || || || || || || || || || |- |1||−7||12||−6|| || ||0||8||−38||54||−24|| || || || || || || || || || || || || || || || || || || |- |1||−15||50||−60||24|| || || || || || || || || || || || || || || || || || || || || || || || || |- |} The first row represents {{math|''s''<sub>0</sub>, ''s''<sub>1</sub>, ''s''<sub>2</sub>, ''s''<sub>3</sub>, ''s''<sub>4</sub>}}. Hence for the second fractional Euler numbers {{OEIS2C|id=A198631}} ({{math|''n''}}) / {{OEIS2C|id=A006519}} ({{math|''n'' + 1}}): :{{math|1= ''E''<sub>0</sub> = 1}} :{{math|1= ''E''<sub>1</sub> = 1 − {{sfrac|1|2}}}} :{{math|1= ''E''<sub>2</sub> = 1 − {{sfrac|3|2}} + {{sfrac|2|4}}}} :{{math|1= ''E''<sub>3</sub> = 1 − {{sfrac|7|2}} + {{sfrac|12|4}} − {{sfrac|6|8}}}} :{{math|1= ''E''<sub>4</sub> = 1 − {{sfrac|15|2}} + {{sfrac|50|4}} − {{sfrac|60|8}} + {{sfrac|24|16}}}} :{{math|1= ''E''<sub>5</sub> = 1 − {{sfrac|31|2}} + {{sfrac|180|4}} − {{sfrac|390|8}} + {{sfrac|360|16}} − {{sfrac|120|32}}}} :{{math|1= ''E''<sub>6</sub> = 1 − {{sfrac|63|2}} + {{sfrac|602|4}} − {{sfrac|2100|8}} + {{sfrac|3360|16}} − {{sfrac|2520|32}} + {{sfrac|720|64}}}} A second formula representing the Bernoulli numbers by the Worpitzky numbers is for {{math|''n'' ≥ 1}} : <math> B_n=\frac n {2^{n+1}-2}\sum_{k=0}^{n-1} (-2)^{-k}\, W_{n-1,k} . </math> The simplified second Worpitzky's representation of the second Bernoulli numbers is: {{OEIS2C|id=A164555}} ({{math|''n'' + 1}}) / {{OEIS2C|id=A027642}}({{math|''n'' + 1}}) = {{math|{{sfrac|''n'' + 1|2<sup>''n'' + 2</sup> − 2}}}} × {{OEIS2C|id=A198631}}({{math|''n''}}) / {{OEIS2C|id=A006519}}({{math|''n'' + 1}}) which links the second Bernoulli numbers to the second fractional Euler numbers. The beginning is: :{{math|{{sfrac|1|2}}, {{sfrac|1|6}}, 0, −{{sfrac|1|30}}, 0, {{sfrac|1|42}}, ... {{=}} ({{sfrac|1|2}}, {{sfrac|1|3}}, {{sfrac|3|14}}, {{sfrac|2|15}}, {{sfrac|5|62}}, {{sfrac|1|21}}, ...) × (1, {{sfrac|1|2}}, 0, −{{sfrac|1|4}}, 0, {{sfrac|1|2}}, ...)}} The numerators of the first parentheses are {{OEIS2C|id=A111701}} (see [[#Connection with Stirling numbers of the first kind|Connection with Stirling numbers of the first kind]]).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Bernoulli number
(section)
Add topic