Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Algorithm
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== By implementation === ; Recursion : A [[recursive algorithm]] invokes itself repeatedly until meeting a termination condition and is a common [[functional programming]] method. [[Iteration|Iterative]] algorithms use repetitions such as [[Program loops|loop]]s or data structures like [[Stack (data structure)|stack]]s to solve problems. Problems may be suited for one implementation or the other. The [[Tower of Hanoi]] is a puzzle commonly solved using recursive implementation. Every recursive version has an equivalent (but possibly more or less complex) iterative version, and vice versa. ; Serial, parallel or distributed : Algorithms are usually discussed with the assumption that computers execute one instruction of an algorithm at a time on serial computers. Serial algorithms are designed for these environments, unlike [[parallel algorithm|parallel]] or [[distributed algorithm|distributed]] algorithms. Parallel algorithms take advantage of computer architectures where multiple processors can work on a problem at the same time. Distributed algorithms use multiple machines connected via a computer network. Parallel and distributed algorithms divide the problem into subproblems and collect the results back together. Resource consumption in these algorithms is not only processor cycles on each processor but also the communication overhead between the processors. Some sorting algorithms can be parallelized efficiently, but their communication overhead is expensive. Iterative algorithms are generally parallelizable, but some problems have no parallel algorithms and are called inherently serial problems. ; Deterministic or non-deterministic : [[Deterministic algorithm]]s solve the problem with exact decisions at every step; whereas [[non-deterministic algorithm]]s solve problems via guessing. Guesses are typically made more accurate through the use of [[heuristics]]. ; Exact or approximate : While many algorithms reach an exact solution, [[approximation algorithm]]s seek an approximation that is close to the true solution. Such algorithms have practical value for many hard problems. For example, the [[Knapsack problem]], where there is a set of items, and the goal is to pack the knapsack to get the maximum total value. Each item has some weight and some value. The total weight that can be carried is no more than some fixed number X. So, the solution must consider the weights of items as well as their value.<ref>{{Cite book|url=https://www.springer.com/us/book/9783540402862|title=Knapsack Problems {{!}} Hans Kellerer {{!}} Springer|language=en|isbn=978-3-540-40286-2|publisher=Springer|year=2004|doi=10.1007/978-3-540-24777-7|access-date=September 19, 2017|archive-url=https://web.archive.org/web/20171018181055/https://www.springer.com/us/book/9783540402862|archive-date=October 18, 2017|url-status=live|last1=Kellerer|first1=Hans|last2=Pferschy|first2=Ulrich|last3=Pisinger|first3=David|s2cid=28836720 }}</ref> ; Quantum algorithm : [[Quantum algorithm]]s run on a realistic model of [[quantum computation]]. The term is usually used for those algorithms that seem inherently quantum or use some essential feature of [[Quantum computing]] such as [[quantum superposition]] or [[quantum entanglement]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Algorithm
(section)
Add topic