Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
System of linear equations
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Cramer's rule=== {{Main|Cramer's rule}} '''Cramer's rule''' is an explicit formula for the solution of a system of linear equations, with each variable given by a quotient of two [[determinant]]s.{{sfnp|Sterling|2009|p=[https://books.google.com/books?id=PsNJ1alC-bsC&pg=PA235 235]}} For example, the solution to the system :<math>\begin{alignat}{7} x &\; + &\; 3y &\; - &\; 2z &\; = &\; 5 \\ 3x &\; + &\; 5y &\; + &\; 6z &\; = &\; 7 \\ 2x &\; + &\; 4y &\; + &\; 3z &\; = &\; 8 \end{alignat}</math> is given by :<math> x=\frac {\, \begin{vmatrix}5&3&-2\\7&5&6\\8&4&3\end{vmatrix} \,} {\, \begin{vmatrix}1&3&-2\\3&5&6\\2&4&3\end{vmatrix} \,} ,\;\;\;\; y=\frac {\, \begin{vmatrix}1&5&-2\\3&7&6\\2&8&3\end{vmatrix} \,} {\, \begin{vmatrix}1&3&-2\\3&5&6\\2&4&3\end{vmatrix} \,} ,\;\;\;\; z=\frac {\, \begin{vmatrix}1&3&5\\3&5&7\\2&4&8\end{vmatrix} \,} {\, \begin{vmatrix}1&3&-2\\3&5&6\\2&4&3\end{vmatrix} \,}. </math> For each variable, the denominator is the determinant of the [[matrix of coefficients]], while the numerator is the determinant of a matrix in which one column has been replaced by the vector of constant terms. Though Cramer's rule is important theoretically, it has little practical value for large matrices, since the computation of large determinants is somewhat cumbersome. (Indeed, large determinants are most easily computed using row reduction.) Further, Cramer's rule has very poor numerical properties, making it unsuitable for solving even small systems reliably, unless the operations are performed in rational arithmetic with unbounded precision.{{Citation needed|date=March 2017}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
System of linear equations
(section)
Add topic