Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Supernova
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Type Ib and Ic==== {{Main|Type Ib and Ic supernovae}} [[Image:Supernova 2008D.jpg|thumb|upright=1.2|Type Ib SN 2008D<ref> {{cite journal |last1=Malesani |first1=D. |last2=Fynbo |first2=J. P. U.<!-- Peter Uldall --> |last3=Hjorth |first3=J. |last4=Leloudas |first4=G. |last5=Sollerman |first5=J. |last6=Stritzinger |first6=M. D. |last7=Vreeswijk |first7=P. M.<!-- Marijn --> |last8=Watson |first8=D. J.<!-- Jafar --> |last9=Gorosabel |first9=J. |last10=Michałowski |first10=M. J. |last11=Thöne |first11=C. C. |last12=Augusteijn |first12=T. |last13=Bersier |first13=D. |last14=Jakobsson |first14=P. |last15=Jaunsen |first15=A. O.<!-- Ortmann --> |last16=Ledoux |first16=C. |last17=Levan |first17=A. J. |last18=Milvang-Jensen |first18=B. |last19=Rol |first19=E. |last20=Tanvir |first20=N. R. |last21=Wiersema |first21=K. |last22=Xu |first22=D. |last23=Albert |first23=L. |last24=Bayliss |first24=M. B. |last25=Gall |first25=C. |last26=Grove |first26=L. F. |last27=Koester |first27=B. P. |last28=Leitet |first28=E. |last29=Pursimo |first29=T. |last30=Skillen |first30=I. |year=2009 |title=Early Spectroscopic Identification of SN 2008D |journal=[[The Astrophysical Journal Letters]] |volume=692 |issue=2 |pages=L84 |arxiv=0805.1188 |bibcode=2009ApJ...692L..84M |doi=10.1088/0004-637X/692/2/L84 |s2cid=1435322 }}</ref> at the far upper end of the galaxy, shown in [[X-ray]] (left) and visible light (right),<ref> {{cite journal |last1=Svirski |first1=G. |last2=Nakar |first2=E. |year=2014 |title=Sn 2008D: A Wolf-Rayet Explosion Through a Thick Wind |journal=[[The Astrophysical Journal]] |volume=788 |issue=1|pages=L14 |arxiv=1403.3400 |bibcode=2014ApJ...788L..14S |doi=10.1088/2041-8205/788/1/L14 |s2cid=118395580 }}</ref> with the brighter SN 2007uy closer to the centre]] These supernovae, like those of type II, are massive stars that undergo core collapse. Unlike the progenitors of type II supernovae, the stars which become types Ib and Ic supernovae have lost most of their outer (hydrogen) envelopes due to strong [[stellar wind]]s or else from interaction with a companion.<ref> {{cite conference |last=Pols |first=O. |date=1997 |title=Close Binary Progenitors of Type Ib/Ic and IIb/II-L Supernovae |editor1-last=Leung |editor1-first=K.-C. |book-title=Proceedings of the Third Pacific Rim Conference on Recent Development on Binary Star Research |volume=130 |pages=153–158 |series=[[ASP Conference Series]] |bibcode=1997ASPC..130..153P }}</ref> These stars are known as [[Wolf–Rayet stars]], and they occur at moderate to high metallicity where continuum driven winds cause sufficiently high mass-loss rates. Observations of type Ib/c supernova do not match the observed or expected occurrence of Wolf–Rayet stars. Alternate explanations for this type of core collapse supernova involve stars stripped of their hydrogen by binary interactions. Binary models provide a better match for the observed supernovae, with the proviso that no suitable binary helium stars have ever been observed.<ref name="eldridge"> {{cite journal |last1=Eldridge |first1=J. J. |last2=Fraser |first2=M. |last3=Smartt |first3=S. J. |last4=Maund |first4=J. R. |last5=Crockett |first5=R. Mark |year=2013 |title=The death of massive stars – II. Observational constraints on the progenitors of Type Ibc supernovae |journal=[[Monthly Notices of the Royal Astronomical Society]] |volume=436 |issue=1|pages=774 |arxiv=1301.1975 |bibcode=2013MNRAS.436..774E |doi=10.1093/mnras/stt1612 |doi-access=free |s2cid=118535155 }}</ref> Type Ib supernovae are the more common and result from Wolf–Rayet stars of [[Wolf-Rayet star#Classification|type WC]] which still have helium in their atmospheres. For a narrow range of masses, stars evolve further before reaching core collapse to become [[Wolf-Rayet star#Classification|WO stars]] with very little helium remaining, and these are the progenitors of type Ic supernovae.<ref>{{cite journal |doi=10.1093/mnras/stx1496|title=Towards a better understanding of the evolution of Wolf–Rayet stars and Type Ib/Ic supernova progenitors |year=2017 |last1=Yoon |first1=Sung-Chul |journal=Monthly Notices of the Royal Astronomical Society |volume=470 |issue=4 |pages=3970–3980 |doi-access=free |arxiv=1706.04716 |bibcode=2017MNRAS.470.3970Y }}</ref> A few percent of the type Ic supernovae are associated with [[gamma-ray burst]]s (GRB), though it is also believed that any hydrogen-stripped type Ib or Ic supernova could produce a GRB, depending on the circumstances of the geometry.<ref> {{Cite journal |last1=Ryder |first1=S. D. |last2=Sadler |first2=E. M. |last3=Subrahmanyan |first3=R. |last4=Weiler |first4=K. W. |last5=Panagia |first5=N. |last6=Stockdale |first6=C. J. |date=2004 |title=Modulations in the radio light curve of the Type IIb supernova 2001ig: evidence for a Wolf-Rayet binary progenitor? |journal=[[Monthly Notices of the Royal Astronomical Society]] |volume=349 |issue=3 |pages=1093–1100 |arxiv=astro-ph/0401135 |bibcode=2004MNRAS.349.1093R |doi=10.1111/j.1365-2966.2004.07589.x |doi-access=free |s2cid=18132819 }}</ref> The mechanism for producing this type of GRB is the jets produced by the magnetic field of the rapidly spinning [[magnetar]] formed at the collapsing core of the star. The jets would also transfer energy into the expanding outer shell, producing a [[super-luminous supernova]].<ref name=piram2019/><ref> {{cite journal |last1=Inserra |first1=C. |last2=Smartt |first2=S. J. |last3=Jerkstrand |first3=A. |last4=Valenti |first4=S. |last5=Fraser |first5=M. |last6=Wright |first6=D. |last7=Smith |first7=K. |last8=Chen |first8=T.-W. |last9=Kotak |first9=R. |last10=Pastorello |first10=A. |last11=Nicholl |first11=M. |last12=Bresolin |first12=S. F. |last13=Kudritzki |first13=R. P. |last14=Benetti |first14=S. |last15=Botticella |first15=M. T. |last16=Burgett |first16=W. S. |last17=Chambers |first17=K. C. |last18=Ergon |first18=M. |last19=Flewelling |first19=H. |last20=Fynbo |first20=J. P. U. |last21=Geier |first21=S. |last22=Hodapp |first22=K. W. |last23=Howell |first23=D. A. |last24=Huber |first24=M. |last25=Kaiser |first25=N. |last26=Leloudas |first26=G. |last27=Magill |first27=L. |last28=Magnier |first28=E. A. |last29=McCrum |first29=M. G. |last30=Metcalfe |first30=N. |last31=Price |first31=P. A. |last32=Rest |first32=A. |last33=Sollerman |first33=J. |last34=Sweeney |first34=W. |last35=Taddia |first35=F. |last36=Taubenberger |first36=S. |last37=Tonry |first37=J. L. |last38=Wainscoat |first38=R. J. |last39=Waters |first39=C. |last40=Young |first40=D. |year=2013 |title=Super-luminous Type Ic Supernovae: Catching a Magnetar by the Tail |journal=The Astrophysical Journal |volume=770 |issue=2 |pages=28 |arxiv=1304.3320 |bibcode=2013ApJ...770..128I |doi=10.1088/0004-637X/770/2/128 |s2cid=13122542 }}</ref><ref> {{cite journal |last1=Nicholl |first1=M. |last2=Smartt |first2=S. J. |last3=Jerkstrand |first3=A. |last4=Inserra |first4=C. |last5=McCrum |first5=M. |last6=Kotak |first6=R. |last7=Fraser |first7=M. |last8=Wright |first8=D. |last9=Chen |first9=T. W. |last10=Smith |first10=K. |last11=Young |first11=D. R. |last12=Sim |first12=S. A. |last13=Valenti |first13=S. |last14=Howell |first14=D. A. |last15=Bresolin |first15=F. |last16=Kudritzki |first16=R. P. |last17=Tonry |first17=J. L. |last18=Huber |first18=M. E. |last19=Rest |first19=A. |last20=Pastorello |first20=A. |last21=Tomasella |first21=L. |last22=Cappellaro |first22=E. |last23=Benetti |first23=S. |last24=Mattila |first24=S. |last25=Kankare |first25=E. |last26=Kangas |first26=T. |last27=Leloudas |first27=G. |last28=Sollerman |first28=J. |last29=Taddia |first29=F. |last30=Berger |first30=E. |year=2013 |title=Slowly fading super-luminous supernovae that are not pair-instability explosions |journal=[[Nature (journal)|Nature]] |volume=502 |issue=7471 |pages=346–349 |arxiv=1310.4446 |bibcode=2013Natur.502..346N |doi=10.1038/nature12569 |pmid=24132291 |s2cid=4472977 }}</ref> Ultra-stripped supernovae occur when the exploding star has been stripped (almost) all the way to the metal core, via mass transfer in a close binary.<ref> {{cite journal |year=2013 |first1=T. M. |last1=Tauris |first2=N. |last2=Langer |first3=T. J. |last3=Moriya |first4=P. |last4=Podsiadlowski |first5=S.-C. |last5=Yoon |first6=S. I. |last6=Blinnikov |title=Ultra-stripped Type Ic supernovae from close binary evolution |journal=Astrophysical Journal Letters |volume=778 |issue=2 |pages=L23 |arxiv=1310.6356 |bibcode=2013ApJ...778L..23T |doi=10.1088/2041-8205/778/2/L23 |s2cid=50835291 }}</ref><ref name="TaurisLangerPodsiadlowski2015">{{cite journal | last1=Tauris | first1=Thomas M. | last2=Langer | first2=Norbert | last3=Podsiadlowski | first3=Philipp | title=Ultra-stripped supernovae: progenitors and fate | journal=Monthly Notices of the Royal Astronomical Society | date=11 June 2015 | volume=451 | issue=2 | pages=2123–2144 | issn=0035-8711 | eissn=1365-2966 | bibcode=2015MNRAS.451.2123T | arxiv=1505.00270 | doi=10.1093/mnras/stv990 | doi-access=free }}</ref> As a result, very little material is ejected from the exploding star (c. {{solar mass|0.1}}). In the most extreme cases, ultra-stripped supernovae can occur in naked metal cores, barely above the Chandrasekhar mass limit. SN 2005ek<ref> {{cite journal |year=2013 |first1=M. R. |last1=Drout |first2=A. M. |last2=Soderberg |first3=P. A. |last3=Mazzali |first4=J. T. |last4=Parrent |first5=R. |last5=Margutti |first6=D. |last6=Milisavljevic |first7=N. E. |last7=Sanders |first8=R. |last8=Chornock |first9=R. J. |last9=Foley |first10=R. P. |last10=Kirshner |first11=A. V. |last11=Filippenko |first12=W. |last12=Li |first13=P. J. |last13=Brown |first14=S. B. |last14=Cenko |first15=S. |last15=Chakraborti |first16=P. |last16=Challis |first17=A. |last17=Friedman |first18=M. |last18=Ganeshalingam |first19=M. |last19=Hicken |first20=C. |last20=Jensen |first21=M. |last21=Modjaz |first22=H. B. |last22=Perets |first23=J. M. |last23=Silverman |first24=D. S. |last24=Wong |title=The Fast and Furious Decay of the Peculiar Type Ic Supernova 2005ek |journal=Astrophysical Journal |volume=774 |issue=58 |pages=44 |arxiv=1306.2337 |bibcode=2013ApJ...774...58D |doi=10.1088/0004-637X/774/1/58 |s2cid=118690361 }}</ref> might be the first observational example of an ultra-stripped supernova, giving rise to a relatively dim and fast decaying light curve. The nature of ultra-stripped supernovae can be both iron core-collapse and electron capture supernovae, depending on the mass of the collapsing core. Ultra-stripped supernovae are believed to be associated with the second supernova explosion in a binary system, producing for example a tight double neutron star system.<ref name="TaurisKramerFreire2017">{{cite journal | last1 = Tauris | first1 = T. M. | last2 = Kramer | first2 = M. | last3 = Freire | first3 = P. C. C. | last4 = Wex | first4 = N. | last5 = Janka | first5 = H.-T. | last6 = Langer | first6 = N. | last7 = Podsiadlowski | first7 = Ph. | last8 = Bozzo | first8 = E. | last9 = Chaty | first9 = S. | last10 = Kruckow | first10 = M. U. | last11 = Heuvel | first11 = E. P. J. van den | last12 = Antoniadis | first12 = J. | last13 = Breton | first13 = R. P. | last14 = Champion | first14 = D. J. | title = Formation of Double Neutron Star Systems | journal = The Astrophysical Journal | date = 13 September 2017 | volume = 846 | issue = 2 | page = 170 | eissn = 1538-4357 | doi = 10.3847/1538-4357/aa7e89 | arxiv = 1706.09438 | bibcode = 2017ApJ...846..170T | s2cid = 119471204 | doi-access = free }}</ref><ref name="DeKasliwalOfek2018">{{cite journal | last1 = De | first1 = K. | last2 = Kasliwal | first2 = M. M. | last3 = Ofek | first3 = E. O. | last4 = Moriya | first4 = T. J. | last5 = Burke | first5 = J. | last6 = Cao | first6 = Y. | last7 = Cenko | first7 = S. B. | last8 = Doran | first8 = G. B. | last9 = Duggan | first9 = G. E. | last10 = Fender | first10 = R. P. | last11 = Fransson | first11 = C. | last12 = Gal-Yam | first12 = A. | last13 = Horesh | first13 = A. | last14 = Kulkarni | first14 = S. R. | last15 = Laher | first15 = R. R. | last16 = Lunnan | first16 = R. | last17 = Manulis | first17 = I. | last18 = Masci | first18 = F. | last19 = Mazzali | first19 = P. A. | last20 = Nugent | first20 = P. E. | last21 = Perley | first21 = D. A. | last22 = Petrushevska | first22 = T. | last23 = Piro | first23 = A. L. | last24 = Rumsey | first24 = C. | last25 = Sollerman | first25 = J. | last26 = Sullivan | first26 = M. | last27 = Taddia | first27 = F. | title = A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary | journal = Science | date = 12 October 2018 | volume = 362 | issue = 6411 | pages = 201–206 | issn = 0036-8075 | eissn = 1095-9203 | doi = 10.1126/science.aas8693 | pmid = 30309948 | arxiv = 1810.05181 | bibcode = 2018Sci...362..201D | s2cid = 52961306 | url = }}</ref> In 2022 a team of astronomers led by researchers from the Weizmann Institute of Science reported the first supernova explosion showing direct evidence for a Wolf-Rayet progenitor star. [[SN 2019hgp]] was a type Icn supernova and is also the first in which the element neon has been detected.<ref>{{cite journal |doi=10.1038/s41586-021-04155-1 |title=A WC/WO star exploding within an expanding carbon–oxygen–neon nebula |year=2022 |last1=Gal-Yam |first1=A. |last2=Bruch |first2=R. |last3=Schulze |first3=S. |last4=Yang |first4=Y. |last5=Perley |first5=D. A. |last6=Irani |first6=I. |last7=Sollerman |first7=J. |last8=Kool |first8=E. C. |last9=Soumagnac |first9=M. T. |last10=Yaron |first10=O. |last11=Strotjohann |first11=N. L. |last12=Zimmerman |first12=E. |last13=Barbarino |first13=C. |last14=Kulkarni |first14=S. R. |last15=Kasliwal |first15=M. M. |last16=De |first16=K. |last17=Yao |first17=Y. |last18=Fremling |first18=C. |last19=Yan |first19=L. |last20=Ofek |first20=E. O. |last21=Fransson |first21=C. |last22=Filippenko |first22=A. V. |last23=Zheng |first23=W. |last24=Brink |first24=T. G. |last25=Copperwheat |first25=C. M. |last26=Foley |first26=R. J. |last27=Brown |first27=J. |last28=Siebert |first28=M. |last29=Leloudas |first29=G. |last30=Cabrera-Lavers |first30=A. L. |journal=Nature |volume=601 |issue=7892 |pages=201–204 |pmid=35022591 |arxiv=2111.12435 |bibcode=2022Natur.601..201G |s2cid=244527654 }}</ref><ref>{{Cite web|title=Astronomers discover first supernova explosion of a Wolf-Rayet star|url=https://www.iac.es/en/outreach/news/astronomers-discover-first-supernova-explosion-wolf-rayet-star|access-date=9 February 2022|website=Instituto de Astrofísica de Canarias • IAC|date=12 January 2022 |language=en}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Supernova
(section)
Add topic